|
|
|
@ -38,35 +38,43 @@ train_reader = paddle.batch(
|
|
|
|
|
|
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
|
|
|
|
|
t = fluid.DistributeTranspiler()
|
|
|
|
|
# all parameter server endpoints list for spliting parameters
|
|
|
|
|
pserver_endpoints = os.getenv("PSERVERS")
|
|
|
|
|
# server endpoint for current node
|
|
|
|
|
current_endpoint = os.getenv("SERVER_ENDPOINT")
|
|
|
|
|
# run as trainer or parameter server
|
|
|
|
|
training_role = os.getenv("TRAINING_ROLE",
|
|
|
|
|
"TRAINER") # get the training role: trainer/pserver
|
|
|
|
|
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=1)
|
|
|
|
|
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
|
|
|
|
|
|
|
|
|
|
if training_role == "PSERVER":
|
|
|
|
|
pserver_prog = t.get_pserver_program(pserver_endpoints, optimize_ops)
|
|
|
|
|
if not current_endpoint:
|
|
|
|
|
print("need env SERVER_ENDPOINT")
|
|
|
|
|
exit(1)
|
|
|
|
|
pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops)
|
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
exe.run(pserver_prog)
|
|
|
|
|
elif training_role == "TRAINER":
|
|
|
|
|
trainer_prog = t.get_trainer_program()
|
|
|
|
|
feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
|
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
|
|
|
|
|
for pass_id in range(PASS_NUM):
|
|
|
|
|
accuracy.reset(exe)
|
|
|
|
|
batch_id = 0
|
|
|
|
|
for data in train_reader():
|
|
|
|
|
loss, acc = exe.run(fluid.default_main_program(),
|
|
|
|
|
loss, acc = exe.run(trainer_prog,
|
|
|
|
|
feed=feeder.feed(data),
|
|
|
|
|
fetch_list=[avg_cost] + accuracy.metrics)
|
|
|
|
|
pass_acc = accuracy.eval(exe)
|
|
|
|
|
# print loss, acc
|
|
|
|
|
if loss < 10.0 and pass_acc > 0.9:
|
|
|
|
|
# if avg cost less than 10.0 and accuracy is larger than 0.9, we think our code is good.
|
|
|
|
|
exit(0)
|
|
|
|
|
if batch_id % 100 == 0:
|
|
|
|
|
print("batch_id %d, loss: %f, acc: %f" %
|
|
|
|
|
(batch_id, loss, pass_acc))
|
|
|
|
|
batch_id += 1
|
|
|
|
|
|
|
|
|
|
pass_acc = accuracy.eval(exe)
|
|
|
|
|
print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc))
|
|
|
|
|
else:
|
|
|
|
|
print("environment var TRAINER_ROLE should be TRAINER os PSERVER")
|
|
|
|
|
|
|
|
|
|
exit(1)
|