Add mnist test for post training quantization, test=develop (#26436)

* Add mnist test for post training quantization, test=develop
test_feature_precision_test_c
cc 5 years ago committed by GitHub
parent 79539cf198
commit 0d71cffd65
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -123,6 +123,7 @@ endfunction()
if(WIN32)
list(REMOVE_ITEM TEST_OPS test_light_nas)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_mnist)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_mobilenetv1)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_resnet50)
list(REMOVE_ITEM TEST_OPS test_weight_quantization_mobilenetv1)

@ -0,0 +1,226 @@
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import os
import time
import sys
import random
import math
import functools
import contextlib
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.dataset.common import download
from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
random.seed(0)
np.random.seed(0)
class TestPostTrainingQuantization(unittest.TestCase):
def setUp(self):
self.download_path = 'int8/download'
self.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
self.download_path)
self.timestamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
self.int8_model_path = os.path.join(os.getcwd(),
"post_training_" + self.timestamp)
try:
os.system("mkdir -p " + self.int8_model_path)
except Exception as e:
print("Failed to create {} due to {}".format(self.int8_model_path,
str(e)))
sys.exit(-1)
def tearDown(self):
try:
os.system("rm -rf {}".format(self.int8_model_path))
except Exception as e:
print("Failed to delete {} due to {}".format(self.int8_model_path,
str(e)))
def cache_unzipping(self, target_folder, zip_path):
if not os.path.exists(target_folder):
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
zip_path)
os.system(cmd)
def download_model(self, data_url, data_md5, folder_name):
download(data_url, self.download_path, data_md5)
file_name = data_url.split('/')[-1]
zip_path = os.path.join(self.cache_folder, file_name)
print('Data is downloaded at {0}'.format(zip_path))
data_cache_folder = os.path.join(self.cache_folder, folder_name)
self.cache_unzipping(data_cache_folder, zip_path)
return data_cache_folder
def run_program(self, model_path, batch_size, infer_iterations):
print("test model path:" + model_path)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
[infer_program, feed_dict, fetch_targets] = \
fluid.io.load_inference_model(model_path, exe)
val_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size)
img_shape = [1, 28, 28]
test_info = []
cnt = 0
periods = []
for batch_id, data in enumerate(val_reader()):
image = np.array(
[x[0].reshape(img_shape) for x in data]).astype("float32")
input_label = np.array([x[1] for x in data]).astype("int64")
t1 = time.time()
out = exe.run(infer_program,
feed={feed_dict[0]: image},
fetch_list=fetch_targets)
t2 = time.time()
period = t2 - t1
periods.append(period)
out_label = np.argmax(np.array(out[0]), axis=1)
top1_num = sum(input_label == out_label)
test_info.append(top1_num)
cnt += len(data)
if (batch_id + 1) == infer_iterations:
break
throughput = cnt / np.sum(periods)
latency = np.average(periods)
acc1 = np.sum(test_info) / cnt
return (throughput, latency, acc1)
def generate_quantized_model(self,
model_path,
algo="KL",
quantizable_op_type=["conv2d"],
is_full_quantize=False,
is_use_cache_file=False,
is_optimize_model=False,
batch_size=10,
batch_nums=10):
place = fluid.CPUPlace()
exe = fluid.Executor(place)
scope = fluid.global_scope()
val_reader = paddle.dataset.mnist.train()
ptq = PostTrainingQuantization(
executor=exe,
model_dir=model_path,
sample_generator=val_reader,
batch_size=batch_size,
batch_nums=batch_nums,
algo=algo,
quantizable_op_type=quantizable_op_type,
is_full_quantize=is_full_quantize,
optimize_model=is_optimize_model,
is_use_cache_file=is_use_cache_file)
ptq.quantize()
ptq.save_quantized_model(self.int8_model_path)
def run_test(self,
model_name,
data_url,
data_md5,
algo,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
batch_size=10,
infer_iterations=10,
quant_iterations=5):
origin_model_path = self.download_model(data_url, data_md5, model_name)
origin_model_path = os.path.join(origin_model_path, model_name)
print("Start FP32 inference for {0} on {1} images ...".format(
model_name, infer_iterations * batch_size))
(fp32_throughput, fp32_latency, fp32_acc1) = self.run_program(
origin_model_path, batch_size, infer_iterations)
print("Start INT8 post training quantization for {0} on {1} images ...".
format(model_name, quant_iterations * batch_size))
self.generate_quantized_model(
origin_model_path, algo, quantizable_op_type, is_full_quantize,
is_use_cache_file, is_optimize_model, batch_size, quant_iterations)
print("Start INT8 inference for {0} on {1} images ...".format(
model_name, infer_iterations * batch_size))
(int8_throughput, int8_latency, int8_acc1) = self.run_program(
self.int8_model_path, batch_size, infer_iterations)
print("---Post training quantization of {} method---".format(algo))
print(
"FP32 {0}: batch_size {1}, throughput {2} img/s, latency {3} s, acc1 {4}.".
format(model_name, batch_size, fp32_throughput, fp32_latency,
fp32_acc1))
print(
"INT8 {0}: batch_size {1}, throughput {2} img/s, latency {3} s, acc1 {4}.\n".
format(model_name, batch_size, int8_throughput, int8_latency,
int8_acc1))
sys.stdout.flush()
delta_value = fp32_acc1 - int8_acc1
self.assertLess(delta_value, diff_threshold)
class TestPostTrainingKLForMnist(TestPostTrainingQuantization):
def test_post_training_kl(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5 = "be71d3997ec35ac2a65ae8a145e2887c"
algo = "KL"
quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
is_full_quantize = False
is_use_cache_file = False
is_optimize_model = True
diff_threshold = 0.01
batch_size = 10
infer_iterations = 50
quant_iterations = 5
self.run_test(model_name, data_url, data_md5, algo, quantizable_op_type,
is_full_quantize, is_use_cache_file, is_optimize_model,
diff_threshold, batch_size, infer_iterations,
quant_iterations)
class TestPostTrainingAbsMaxForMnist(TestPostTrainingQuantization):
def test_post_training_abs_max(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5 = "be71d3997ec35ac2a65ae8a145e2887c"
algo = "abs_max"
quantizable_op_type = ["conv2d", "mul"]
is_full_quantize = True
is_use_cache_file = False
is_optimize_model = True
diff_threshold = 0.01
batch_size = 10
infer_iterations = 50
quant_iterations = 10
self.run_test(model_name, data_url, data_md5, algo, quantizable_op_type,
is_full_quantize, is_use_cache_file, is_optimize_model,
diff_threshold, batch_size, infer_iterations,
quant_iterations)
if __name__ == '__main__':
unittest.main()
Loading…
Cancel
Save