parent
1b8d2e65ae
commit
0e45f952a2
@ -0,0 +1,224 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "ConvOp.h"
|
||||
#include "nnpack.h"
|
||||
|
||||
DEFINE_bool(nnpack_allocate_outside,
|
||||
false,
|
||||
"Allocate and free workspace memory outside the NNPACK interface.");
|
||||
DEFINE_int32(nnpack_num_threads,
|
||||
0,
|
||||
"The number of nnpack threads"
|
||||
"default: 0; 0 to disable threadpool.");
|
||||
|
||||
namespace paddle {
|
||||
|
||||
nnp_convolution_algorithm get_nnp_convolution_algorithm(
|
||||
const std::string& algorithm) {
|
||||
if (algorithm == "auto") {
|
||||
return nnp_convolution_algorithm_auto;
|
||||
} else if (algorithm == "ft8x8") {
|
||||
return nnp_convolution_algorithm_ft8x8;
|
||||
} else if (algorithm == "ft16x16") {
|
||||
return nnp_convolution_algorithm_ft16x16;
|
||||
} else if (algorithm == "wt8x8") {
|
||||
return nnp_convolution_algorithm_wt8x8;
|
||||
} else if (algorithm == "implicit-gemm") {
|
||||
return nnp_convolution_algorithm_implicit_gemm;
|
||||
} else if (algorithm == "direct") {
|
||||
return nnp_convolution_algorithm_direct;
|
||||
} else {
|
||||
return nnp_convolution_algorithm_auto;
|
||||
}
|
||||
}
|
||||
|
||||
template <DeviceType Device>
|
||||
class NNPACKConvFunction : public ConvFunctionBase {
|
||||
public:
|
||||
void init(const FuncConfig& config) override {
|
||||
ConvFunctionBase::init(config);
|
||||
CHECK_EQ(groups_, (size_t)1);
|
||||
algorithm_ = get_nnp_convolution_algorithm(config.get<std::string>("algo"));
|
||||
// algorithm_ = nnp_convolution_algorithm_auto;
|
||||
transform_strategy_ = nnp_convolution_transform_strategy_compute;
|
||||
nnp_status status = nnp_initialize();
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
workspaceBuffer_ = nullptr;
|
||||
workspaceSize_ = 0;
|
||||
|
||||
threadpool_ = nullptr;
|
||||
if (FLAGS_nnpack_num_threads) {
|
||||
threadpool_ = pthreadpool_create(FLAGS_nnpack_num_threads);
|
||||
VLOG(3) << "Number of threads "
|
||||
<< pthreadpool_get_threads_count(threadpool_);
|
||||
}
|
||||
}
|
||||
|
||||
~NNPACKConvFunction() {
|
||||
if (threadpool_) {
|
||||
pthreadpool_destroy(threadpool_);
|
||||
}
|
||||
}
|
||||
|
||||
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
||||
CHECK_EQ(numInputs_, inputs.size());
|
||||
CHECK_EQ(numOutputs_, outputs.size());
|
||||
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
|
||||
const TensorShape& input = inputs[0].shape();
|
||||
const TensorShape& filter = inputs[1].shape();
|
||||
const TensorShape& output = outputs[0].shape();
|
||||
check(input, filter, output);
|
||||
|
||||
size_t batchSize = input[0];
|
||||
size_t inputChannels = input[1];
|
||||
size_t inputHeight = input[2];
|
||||
size_t inputWidth = input[3];
|
||||
size_t filterHeight = getFilterHeight(filter);
|
||||
size_t filterWidth = getFilterWidth(filter);
|
||||
size_t outputChannels = output[1];
|
||||
// size_t outputHeight = output[2];
|
||||
// size_t outputWidth = output[3];
|
||||
|
||||
nnp_size inputSize = {.width = inputWidth, .height = inputHeight};
|
||||
nnp_padding padding = {.top = paddingH(),
|
||||
.right = paddingW(),
|
||||
.bottom = paddingH(),
|
||||
.left = paddingW()};
|
||||
nnp_size kernelSize = {.width = filterWidth, .height = filterHeight};
|
||||
nnp_size outputSubsampling = {.width = strideW(), .height = strideH()};
|
||||
|
||||
float* inputData = inputs[0].data<float>();
|
||||
float* filterData = inputs[1].data<float>();
|
||||
float* outputData = outputs[0].data<float>();
|
||||
|
||||
void* bufferPtr = nullptr;
|
||||
size_t* sizePtr = nullptr;
|
||||
size_t needSize;
|
||||
if (FLAGS_nnpack_allocate_outside) {
|
||||
if (batchSize == 1) {
|
||||
nnp_status status = nnp_convolution_inference(algorithm_,
|
||||
transform_strategy_,
|
||||
inputChannels,
|
||||
outputChannels,
|
||||
inputSize,
|
||||
padding,
|
||||
kernelSize,
|
||||
outputSubsampling,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
&needSize,
|
||||
nnp_activation_identity,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr);
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
} else {
|
||||
// only supports stride = 1
|
||||
CHECK_EQ(stride_, 1);
|
||||
nnp_status status = nnp_convolution_output(algorithm_,
|
||||
batchSize,
|
||||
inputChannels,
|
||||
outputChannels,
|
||||
inputSize,
|
||||
padding,
|
||||
kernelSize,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
&needSize,
|
||||
nnp_activation_identity,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr);
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
}
|
||||
|
||||
LOG(INFO) << "workspace size is " << needSize;
|
||||
if (needSize > workspaceSize_) {
|
||||
workspaceSize_ = needSize;
|
||||
if (workspaceBuffer_) {
|
||||
free(workspaceBuffer_);
|
||||
} else {
|
||||
posix_memalign(&workspaceBuffer_, 64, needSize);
|
||||
}
|
||||
}
|
||||
|
||||
if (needSize) {
|
||||
bufferPtr = workspaceBuffer_;
|
||||
sizePtr = &needSize;
|
||||
}
|
||||
}
|
||||
|
||||
if (batchSize == 1) {
|
||||
nnp_status status =
|
||||
nnp_convolution_inference(algorithm_,
|
||||
transform_strategy_,
|
||||
inputChannels,
|
||||
outputChannels,
|
||||
inputSize,
|
||||
padding,
|
||||
kernelSize,
|
||||
outputSubsampling,
|
||||
inputData,
|
||||
filterData,
|
||||
nullptr, /* bias */
|
||||
outputData,
|
||||
bufferPtr,
|
||||
sizePtr,
|
||||
nnp_activation_identity,
|
||||
nullptr,
|
||||
threadpool_, /* threadpool */
|
||||
nullptr);
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
} else {
|
||||
// only supports stride = 1
|
||||
CHECK_EQ(stride_, 1);
|
||||
nnp_status status = nnp_convolution_output(algorithm_,
|
||||
batchSize,
|
||||
inputChannels,
|
||||
outputChannels,
|
||||
inputSize,
|
||||
padding,
|
||||
kernelSize,
|
||||
inputData,
|
||||
filterData,
|
||||
nullptr, /* bias */
|
||||
outputData,
|
||||
bufferPtr,
|
||||
sizePtr,
|
||||
nnp_activation_identity,
|
||||
nullptr,
|
||||
threadpool_, /* threadpool */
|
||||
nullptr);
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
nnp_convolution_algorithm algorithm_;
|
||||
nnp_convolution_transform_strategy transform_strategy_;
|
||||
void* workspaceBuffer_;
|
||||
size_t workspaceSize_;
|
||||
pthreadpool_t threadpool_;
|
||||
};
|
||||
|
||||
REGISTER_TYPED_FUNC(NNPACKConv, CPU, NNPACKConvFunction);
|
||||
|
||||
} // namespace paddle
|
Loading…
Reference in new issue