parent
c45cee0349
commit
0f0d48230c
@ -0,0 +1,139 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
from test_fusion_lstm_op import fc, ACTIVATION
|
||||
|
||||
|
||||
def fusion_seqexpand_concat_fc(xs, lod, w, b, fc_act):
|
||||
|
||||
T = sum(lod[0])
|
||||
N = len(lod[0])
|
||||
num_inputs = len(xs)
|
||||
D = w.shape[1]
|
||||
|
||||
expanded_inputs = [xs[0]]
|
||||
for i in range(num_inputs - 1):
|
||||
x = xs[i + 1]
|
||||
assert x.shape[0] == N
|
||||
expanded = np.repeat(x, lod[0], axis=0)
|
||||
assert expanded.shape[0] == T
|
||||
assert expanded.shape[1] == x.shape[1]
|
||||
expanded_inputs.append(expanded)
|
||||
|
||||
fc_input = np.concatenate(expanded_inputs, axis=1)
|
||||
assert fc_input.shape[0] == T
|
||||
assert fc_input.shape[1] == w.shape[0]
|
||||
fc_out = fc(fc_input, w, b)
|
||||
fc_out = fc_act(fc_out)
|
||||
assert fc_out.shape[0] == T
|
||||
assert fc_out.shape[1] == D
|
||||
return fc_out
|
||||
|
||||
|
||||
class TestFusionSeqExpandConcatFCOp(OpTest):
|
||||
def set_conf(self):
|
||||
pass
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = 'fusion_seq_concat_fc'
|
||||
self.lod = [[3, 5, 8, 2]]
|
||||
self.inputs_M = [15, 10, 10]
|
||||
self.D = 20
|
||||
self.with_bias = True
|
||||
self.fc_act = 'relu'
|
||||
self.set_conf()
|
||||
|
||||
T = sum(self.lod[0])
|
||||
bs = len(self.lod[0])
|
||||
num_inputs = len(self.inputs_M)
|
||||
|
||||
x0 = np.random.normal(size=(T, self.inputs_M[0])).astype('float32')
|
||||
xs = [x0]
|
||||
for i in range(num_inputs - 1):
|
||||
xi = np.random.normal(size=(bs,
|
||||
self.inputs_M[i + 1])).astype('float32')
|
||||
xs.append(xi)
|
||||
|
||||
# fc weight and bias
|
||||
w = np.random.normal(size=(sum(self.inputs_M),
|
||||
self.D)).astype('float32')
|
||||
b = np.random.normal(size=(
|
||||
1, self.D)).astype('float32') if self.with_bias else np.zeros(
|
||||
(1, self.D)).astype('float32')
|
||||
|
||||
out = fusion_seqexpand_concat_fc(xs, self.lod, w, b,
|
||||
ACTIVATION[self.fc_act])
|
||||
|
||||
self.inputs = {'X': [(x0, self.lod)], 'FCWeight': w}
|
||||
normal_lod = [i for i in range(bs + 1)]
|
||||
for i in range(num_inputs - 1):
|
||||
self.inputs['X'].append((xs[i + 1], normal_lod))
|
||||
|
||||
if self.with_bias:
|
||||
self.inputs['FCBias'] = b
|
||||
|
||||
self.outputs = {'Out': (out, self.lod)}
|
||||
self.attrs = {'fc_activation': self.fc_act, }
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
class TestFusionSECFCOpNonBias(TestFusionSeqExpandConcatFCOp):
|
||||
def set_conf(self):
|
||||
self.with_bias = False
|
||||
|
||||
|
||||
class TestFusionSECFCOpNonAct(TestFusionSeqExpandConcatFCOp):
|
||||
def set_conf(self):
|
||||
self.fc_act = 'identity'
|
||||
|
||||
|
||||
class TestFusionSECFCOpMD1(TestFusionSeqExpandConcatFCOp):
|
||||
def set_conf(self):
|
||||
self.inputs_M = [3, 4, 2, 1, 5]
|
||||
self.D = 8
|
||||
|
||||
|
||||
class TestFusionSECFCOpMD2(TestFusionSeqExpandConcatFCOp):
|
||||
def set_conf(self):
|
||||
self.lod = [[5, 6]]
|
||||
self.inputs_M = [1, 1]
|
||||
|
||||
|
||||
class TestFusionSECFCOpBS1_1(TestFusionSeqExpandConcatFCOp):
|
||||
def set_conf(self):
|
||||
self.lod = [[1]]
|
||||
self.inputs_M = [3, 4, 2]
|
||||
|
||||
|
||||
class TestFusionSECFCOpBS1_2(TestFusionSeqExpandConcatFCOp):
|
||||
def set_conf(self):
|
||||
self.lod = [[1]]
|
||||
self.inputs_M = [3, 4]
|
||||
|
||||
|
||||
class TestFusionSECFCOpBS1_3(TestFusionSeqExpandConcatFCOp):
|
||||
def set_conf(self):
|
||||
self.lod = [[5]]
|
||||
self.inputs_M = [6, 3]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue