|
|
|
@ -29,8 +29,8 @@ from test_imperative_base import new_program_scope
|
|
|
|
|
class SimpleImgConvPool(fluid.imperative.PyLayer):
|
|
|
|
|
def __init__(self,
|
|
|
|
|
num_channels,
|
|
|
|
|
filter_size,
|
|
|
|
|
num_filters,
|
|
|
|
|
filter_size,
|
|
|
|
|
pool_size,
|
|
|
|
|
pool_stride,
|
|
|
|
|
pool_padding=0,
|
|
|
|
@ -77,10 +77,10 @@ class MNIST(fluid.imperative.PyLayer):
|
|
|
|
|
super(MNIST, self).__init__(param_attr=param_attr, bias_attr=bias_attr)
|
|
|
|
|
|
|
|
|
|
self._simple_img_conv_pool_1 = SimpleImgConvPool(
|
|
|
|
|
1, 5, 20, 2, 2, act="relu")
|
|
|
|
|
1, 20, 5, 2, 2, act="relu")
|
|
|
|
|
|
|
|
|
|
self._simple_img_conv_pool_2 = SimpleImgConvPool(
|
|
|
|
|
20, 5, 50, 2, 2, act="relu")
|
|
|
|
|
20, 50, 5, 2, 2, act="relu")
|
|
|
|
|
|
|
|
|
|
pool_2_shape = 50 * 8 * 8
|
|
|
|
|
SIZE = 10
|
|
|
|
@ -106,18 +106,15 @@ class TestImperativeMnist(unittest.TestCase):
|
|
|
|
|
fluid.default_startup_program().random_seed = seed
|
|
|
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
|
|
|
|
|
|
mnist = Conv2D(1, 20, 5)
|
|
|
|
|
# mnist = Conv2D(1, 20, 5)
|
|
|
|
|
mnist = MNIST()
|
|
|
|
|
sgd = SGDOptimizer(learning_rate=1e-3)
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.dataset.mnist.train(), batch_size=128)
|
|
|
|
|
|
|
|
|
|
dy_param_value = {}
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
dy_param_value[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
dy_param_init_value = {}
|
|
|
|
|
for batch_id, data in enumerate(train_reader()):
|
|
|
|
|
if batch_id >= 1:
|
|
|
|
|
if batch_id >= 2:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
x_data = np.array(
|
|
|
|
@ -133,9 +130,17 @@ class TestImperativeMnist(unittest.TestCase):
|
|
|
|
|
loss = fluid.layers.reduce_mean(cost)
|
|
|
|
|
dy_out = loss._numpy()
|
|
|
|
|
|
|
|
|
|
if batch_id == 0:
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
dy_param_init_value[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
loss._backward()
|
|
|
|
|
sgd.minimize(loss)
|
|
|
|
|
dy_filter_param = mnist._filter_param._numpy()
|
|
|
|
|
dy_param_value = {}
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
dy_param_value[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
with new_program_scope():
|
|
|
|
|
fluid.default_startup_program().random_seed = seed
|
|
|
|
@ -143,7 +148,8 @@ class TestImperativeMnist(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
|
|
|
|
|
|
|
|
mnist = Conv2D(1, 20, 5)
|
|
|
|
|
# mnist = Conv2D(1, 20, 5)
|
|
|
|
|
mnist = MNIST()
|
|
|
|
|
sgd = SGDOptimizer(learning_rate=1e-3)
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.dataset.mnist.train(), batch_size=128)
|
|
|
|
@ -156,7 +162,7 @@ class TestImperativeMnist(unittest.TestCase):
|
|
|
|
|
sgd.minimize(loss)
|
|
|
|
|
|
|
|
|
|
# initialize params and fetch them
|
|
|
|
|
static_param_value = {}
|
|
|
|
|
static_param_init_value = {}
|
|
|
|
|
static_param_name_list = []
|
|
|
|
|
for param in fluid.default_startup_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
@ -166,27 +172,35 @@ class TestImperativeMnist(unittest.TestCase):
|
|
|
|
|
fetch_list=static_param_name_list)
|
|
|
|
|
|
|
|
|
|
for i in range(len(static_param_name_list)):
|
|
|
|
|
static_param_value[static_param_name_list[i]] = out[i]
|
|
|
|
|
static_param_init_value[static_param_name_list[i]] = out[i]
|
|
|
|
|
|
|
|
|
|
for batch_id, data in enumerate(train_reader()):
|
|
|
|
|
if batch_id >= 1:
|
|
|
|
|
if batch_id >= 2:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
x_data = np.array(
|
|
|
|
|
[x[0].reshape(1, 28, 28) for x in data]).astype('float32')
|
|
|
|
|
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
|
|
|
|
|
[128, 1])
|
|
|
|
|
static_out, static_filter_param = exe.run(
|
|
|
|
|
fluid.default_main_program(),
|
|
|
|
|
feed={"pixel": x_data,
|
|
|
|
|
"label": y_data},
|
|
|
|
|
fetch_list=[loss.name, mnist._filter_param.name])
|
|
|
|
|
|
|
|
|
|
fetch_list = [loss.name]
|
|
|
|
|
fetch_list.extend(static_param_name_list)
|
|
|
|
|
out = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed={"pixel": x_data,
|
|
|
|
|
"label": y_data},
|
|
|
|
|
fetch_list=fetch_list)
|
|
|
|
|
|
|
|
|
|
static_param_value = {}
|
|
|
|
|
static_out = out[0]
|
|
|
|
|
for i in range(1, len(out)):
|
|
|
|
|
static_param_value[static_param_name_list[i - 1]] = out[i]
|
|
|
|
|
|
|
|
|
|
for key, value in six.iteritems(static_param_init_value):
|
|
|
|
|
self.assertTrue(
|
|
|
|
|
np.allclose(value.all(), dy_param_init_value[key].all()))
|
|
|
|
|
self.assertTrue(np.allclose(static_out.all(), dy_out.all()))
|
|
|
|
|
for key, value in six.iteritems(static_param_value):
|
|
|
|
|
self.assertTrue(np.allclose(value.all(), dy_param_value[key].all()))
|
|
|
|
|
self.assertTrue(np.allclose(static_out.all(), dy_out.all()))
|
|
|
|
|
self.assertTrue(
|
|
|
|
|
np.allclose(static_filter_param.all(), dy_filter_param.all()))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|