fix test_multiprocess_dataloader_base timeout. test=develop (#24053)
parent
d053dfd5fc
commit
10d85208bf
@ -0,0 +1,132 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import division
|
||||
|
||||
import os
|
||||
import sys
|
||||
import six
|
||||
import time
|
||||
import unittest
|
||||
import multiprocessing
|
||||
import numpy as np
|
||||
|
||||
import paddle.fluid as fluid
|
||||
from paddle.io import Dataset, BatchSampler, DataLoader
|
||||
from paddle.fluid.dygraph.nn import Linear
|
||||
from paddle.fluid.dygraph.base import to_variable
|
||||
|
||||
from test_multiprocess_dataloader_static import RandomDataset, prepare_places
|
||||
|
||||
EPOCH_NUM = 5
|
||||
BATCH_SIZE = 16
|
||||
IMAGE_SIZE = 784
|
||||
SAMPLE_NUM = 400
|
||||
CLASS_NUM = 10
|
||||
|
||||
|
||||
class SimpleFCNet(fluid.dygraph.Layer):
|
||||
def __init__(self):
|
||||
super(SimpleFCNet, self).__init__()
|
||||
|
||||
param_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
|
||||
value=0.8))
|
||||
bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
|
||||
value=0.5))
|
||||
self._fcs = []
|
||||
in_channel = IMAGE_SIZE
|
||||
for hidden_size in [10, 20, 30]:
|
||||
self._fcs.append(
|
||||
Linear(
|
||||
in_channel,
|
||||
hidden_size,
|
||||
act='tanh',
|
||||
param_attr=param_attr,
|
||||
bias_attr=bias_attr))
|
||||
in_channel = hidden_size
|
||||
self._fcs.append(
|
||||
Linear(
|
||||
in_channel,
|
||||
CLASS_NUM,
|
||||
act='softmax',
|
||||
param_attr=param_attr,
|
||||
bias_attr=bias_attr))
|
||||
|
||||
def forward(self, image):
|
||||
out = image
|
||||
for fc in self._fcs:
|
||||
out = fc(out)
|
||||
return out
|
||||
|
||||
|
||||
class TestDygraphDataLoader(unittest.TestCase):
|
||||
def run_main(self, num_workers, places):
|
||||
fluid.default_startup_program().random_seed = 1
|
||||
fluid.default_main_program().random_seed = 1
|
||||
with fluid.dygraph.guard(places[0]):
|
||||
fc_net = SimpleFCNet()
|
||||
optimizer = fluid.optimizer.Adam(parameter_list=fc_net.parameters())
|
||||
|
||||
dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
|
||||
dataloader = DataLoader(
|
||||
dataset,
|
||||
places=places,
|
||||
num_workers=num_workers,
|
||||
batch_size=BATCH_SIZE,
|
||||
drop_last=True)
|
||||
assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)
|
||||
|
||||
step_list = []
|
||||
loss_list = []
|
||||
start_t = time.time()
|
||||
for _ in six.moves.range(EPOCH_NUM):
|
||||
step = 0
|
||||
for image, label in dataloader():
|
||||
out = fc_net(image)
|
||||
loss = fluid.layers.cross_entropy(out, label)
|
||||
avg_loss = fluid.layers.reduce_mean(loss)
|
||||
avg_loss.backward()
|
||||
optimizer.minimize(avg_loss)
|
||||
fc_net.clear_gradients()
|
||||
|
||||
loss_list.append(np.mean(avg_loss.numpy()))
|
||||
step += 1
|
||||
step_list.append(step)
|
||||
|
||||
end_t = time.time()
|
||||
ret = {
|
||||
"time": end_t - start_t,
|
||||
"step": step_list,
|
||||
"loss": np.array(loss_list)
|
||||
}
|
||||
print("time cost", ret['time'], 'step_list', ret['step'])
|
||||
return ret
|
||||
|
||||
def test_main(self):
|
||||
# dynamic graph do not run with_data_parallel
|
||||
for p in prepare_places(False):
|
||||
results = []
|
||||
for num_workers in [0, 2]:
|
||||
print(self.__class__.__name__, p, num_workers)
|
||||
sys.stdout.flush()
|
||||
ret = self.run_main(num_workers=num_workers, places=p)
|
||||
results.append(ret)
|
||||
diff = np.max(
|
||||
np.abs(results[0]['loss'] - results[1]['loss']) /
|
||||
np.abs(results[0]['loss']))
|
||||
self.assertLess(diff, 1e-2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue