add kernel for flatten_op, test=develop (#19472)
* add kernel for flatten_op, test=develop * add kernel for flatten_op, test=develop * fix the license and remove redundant code, test=developsigmoid_bug
parent
0a46d34538
commit
118bb897cf
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,44 @@
|
||||
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/flatten_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
flatten, ops::FlattenKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::FlattenKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::FlattenKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::FlattenKernel<paddle::platform::CUDADeviceContext, int8_t>,
|
||||
ops::FlattenKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
flatten_grad,
|
||||
ops::FlattenGradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::FlattenGradKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::FlattenGradKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::FlattenGradKernel<paddle::platform::CUDADeviceContext, int8_t>,
|
||||
ops::FlattenGradKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
flatten2, ops::Flatten2Kernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::Flatten2Kernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::Flatten2Kernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::Flatten2Kernel<paddle::platform::CUDADeviceContext, int8_t>,
|
||||
ops::Flatten2Kernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
flatten2_grad,
|
||||
ops::Flatten2GradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::Flatten2GradKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::Flatten2GradKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::Flatten2GradKernel<paddle::platform::CUDADeviceContext, int8_t>,
|
||||
ops::Flatten2GradKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
@ -0,0 +1,116 @@
|
||||
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include <vector>
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/operators/math/blas.h"
|
||||
#include "paddle/fluid/operators/math/math_function.h"
|
||||
#include "paddle/fluid/operators/math/pooling.h"
|
||||
#include "paddle/fluid/platform/device_context.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class FlattenKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &context) const override {
|
||||
auto *in = context.Input<framework::LoDTensor>("X");
|
||||
auto *out = context.Output<framework::LoDTensor>("Out");
|
||||
|
||||
auto &axes = context.Attr<int>("axis");
|
||||
auto x_dims = in->dims();
|
||||
auto out_dims = framework::make_ddim(GetOutputShape(axes, x_dims));
|
||||
|
||||
out->mutable_data(context.GetPlace(), in->type());
|
||||
framework::TensorCopy(
|
||||
*in, context.GetPlace(),
|
||||
context.template device_context<platform::DeviceContext>(), out);
|
||||
out->Resize(out_dims);
|
||||
}
|
||||
|
||||
static std::vector<int32_t> GetOutputShape(const int axis,
|
||||
const framework::DDim &in_dims) {
|
||||
int64_t outer = 1, inner = 1;
|
||||
for (int i = 0; i < in_dims.size(); ++i) {
|
||||
if (i < axis) {
|
||||
outer *= in_dims[i];
|
||||
} else {
|
||||
inner *= in_dims[i];
|
||||
}
|
||||
}
|
||||
std::vector<int32_t> out_shape(2);
|
||||
out_shape[0] = outer;
|
||||
out_shape[1] = inner;
|
||||
return out_shape;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class FlattenGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||
auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
||||
auto *d_out =
|
||||
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
|
||||
auto in_dims = ctx.Input<framework::LoDTensor>("X")->dims();
|
||||
|
||||
d_x->mutable_data(ctx.GetPlace(), d_out->type());
|
||||
framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
|
||||
d_x->Resize(in_dims);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class Flatten2Kernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &context) const override {
|
||||
auto &axes = context.Attr<int>("axis");
|
||||
|
||||
auto *in = context.Input<framework::LoDTensor>("X");
|
||||
auto x_dims = in->dims();
|
||||
|
||||
auto *out = context.Output<framework::LoDTensor>("Out");
|
||||
|
||||
auto out_dims = framework::make_ddim(
|
||||
FlattenKernel<DeviceContext, T>::GetOutputShape(axes, x_dims));
|
||||
|
||||
out->mutable_data(context.GetPlace(), in->type());
|
||||
framework::TensorCopy(
|
||||
*in, context.GetPlace(),
|
||||
context.template device_context<platform::DeviceContext>(), out);
|
||||
out->Resize(out_dims);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class Flatten2GradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||
auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
||||
auto *d_out =
|
||||
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
|
||||
|
||||
auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
|
||||
auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
|
||||
|
||||
d_x->mutable_data(ctx.GetPlace(), d_out->type());
|
||||
framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
|
||||
d_x->Resize(x_dims);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,73 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestFlattenOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "flatten2"
|
||||
self.init_test_case()
|
||||
self.inputs = {"X": np.random.random(self.in_shape).astype("float32")}
|
||||
self.init_attrs()
|
||||
self.outputs = {
|
||||
"Out": self.inputs["X"].reshape(self.new_shape),
|
||||
"XShape": np.random.random(self.in_shape).astype("float32")
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output(no_check_set=["XShape"])
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X"], "Out")
|
||||
|
||||
def init_test_case(self):
|
||||
self.in_shape = (3, 2, 2, 5)
|
||||
self.axis = 1
|
||||
self.new_shape = (3, 20)
|
||||
|
||||
def init_attrs(self):
|
||||
self.attrs = {"axis": self.axis}
|
||||
|
||||
|
||||
class TestFlattenOp(TestFlattenOp):
|
||||
def init_test_case(self):
|
||||
self.in_shape = (3, 2, 2, 3)
|
||||
self.axis = 0
|
||||
self.new_shape = (1, 36)
|
||||
|
||||
|
||||
class TestFlattenOpWithDefaultAxis(TestFlattenOp):
|
||||
def init_test_case(self):
|
||||
self.in_shape = (3, 2, 2, 3)
|
||||
self.new_shape = (3, 12)
|
||||
|
||||
def init_attrs(self):
|
||||
self.attrs = {}
|
||||
|
||||
|
||||
class TestFlattenOpSixDims(TestFlattenOp):
|
||||
def init_test_case(self):
|
||||
self.in_shape = (3, 2, 3, 2, 4, 4)
|
||||
self.axis = 4
|
||||
self.new_shape = (36, 16)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue