parent
5d7f6dde52
commit
11975b4f91
@ -0,0 +1,225 @@
|
||||
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/utils/Logging.h"
|
||||
#include "paddle/utils/Stat.h"
|
||||
#include "Conv3DLayer.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
REGISTER_LAYER(conv3d, Conv3DLayer);
|
||||
|
||||
bool Conv3DLayer::init(const LayerMap &layerMap,
|
||||
const ParameterMap ¶meterMap) {
|
||||
if (!ConvBaseLayer::init(layerMap, parameterMap))
|
||||
return false;
|
||||
int index = 0;
|
||||
for (auto &inputConfig : config_.inputs()) {
|
||||
const ConvConfig &conf = inputConfig.conv_conf();
|
||||
M_.push_back(numFilters_ / conf.groups());
|
||||
K_.push_back(
|
||||
conf.filter_channels() * conf.filter_size_z() * \
|
||||
conf.filter_size_y() * conf.filter_size());
|
||||
weights_[index]->getW()->reshape(
|
||||
weights_[index]->getW()->getWidth(),
|
||||
weights_[index]->getW()->getHeight());
|
||||
weights_[index]->getWGrad()->reshape(
|
||||
weights_[index]->getWGrad()->getWidth(),
|
||||
weights_[index]->getWGrad()->getHeight());
|
||||
++index;
|
||||
}
|
||||
biases_->getWGrad()->reshape(
|
||||
biases_->getWGrad()->width_, biases_->getWGrad()->height_);
|
||||
biases_->getW()->reshape(
|
||||
biases_->getW()->width_, biases_->getW()->height_);
|
||||
CHECK(inputLayers_.size() == parameters_.size());
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
size_t Conv3DLayer::getSize() {
|
||||
CHECK_NE(inputLayers_.size(), 0UL);
|
||||
// imgSizeH_.clear();
|
||||
// imgSizeW_.clear();
|
||||
// imgSizeD_.clear();
|
||||
outputH_.clear();
|
||||
outputW_.clear();
|
||||
outputD_.clear();
|
||||
N_.clear();
|
||||
size_t layerSize = 0;
|
||||
for (size_t i = 0; i < inputLayers_.size(); ++i) {
|
||||
// imgSizeH_.push_back(inputLayers_[i]->getOutput().getFrameHeight());
|
||||
// imgSizeW_.push_back(inputLayers_[i]->getOutput().getFrameWidth());
|
||||
// imgSizeD_.push_back(inputLayers_[i]->getOutput().getFrameDepth());
|
||||
outputW_.push_back(outputSize(
|
||||
imgSizeW_[i], filterSize_[i],
|
||||
padding_[i], stride_[i], true));
|
||||
outputH_.push_back(outputSize(
|
||||
imgSizeH_[i], filterSizeY_[i],
|
||||
paddingY_[i], strideY_[i], true));
|
||||
outputD_.push_back(outputSize(
|
||||
imgSizeD_[i], filterSizeZ_[i],
|
||||
paddingZ_[i], strideZ_[i], true));
|
||||
|
||||
N_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
|
||||
CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
|
||||
layerSize += N_[i] * numFilters_;
|
||||
}
|
||||
getOutput().setFrameHeight(outputH_[0]);
|
||||
getOutput().setFrameWidth(outputW_[0]);
|
||||
getOutput().setFrameDepth(outputD_[0]);
|
||||
return layerSize;
|
||||
}
|
||||
|
||||
void Conv3DLayer::forward(PassType passType) {
|
||||
Layer::forward(passType);
|
||||
|
||||
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
|
||||
int outWidth = getSize();
|
||||
resetOutput(batchSize, outWidth);
|
||||
const MatrixPtr outMat = getOutputValue();
|
||||
|
||||
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
||||
REGISTER_TIMER_INFO("FwdConv3D", getName().c_str());
|
||||
const MatrixPtr& inMat = getInputValue(i);
|
||||
int width = inMat->getWidth();
|
||||
int M = M_[i];
|
||||
int N = N_[i];
|
||||
int K = K_[i];
|
||||
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
|
||||
MatrixPtr wMat = weights_[i]->getW();
|
||||
for (int n = 0; n < batchSize; ++n) {
|
||||
colBuf_->vol2Col(inMat->getData() + n * width, channels_[i],
|
||||
imgSizeD_[i], imgSizeH_[i], imgSizeW_[i],
|
||||
filterSizeZ_[i], filterSizeY_[i], filterSize_[i],
|
||||
strideZ_[i], strideY_[i], stride_[i],
|
||||
paddingZ_[i], paddingY_[i], padding_[i]);
|
||||
|
||||
real *outData = outMat->getData() + n * outWidth;
|
||||
MatrixPtr outMatSub =
|
||||
Matrix::create(outData, groups_[i] * M, N, false, useGpu_);
|
||||
for (int g = 0; g < groups_[i]; g++) {
|
||||
MatrixPtr wMatSub = wMat->subMatrix(g * M, M);
|
||||
MatrixPtr in = colBuf_->subMatrix(g * K, K);
|
||||
MatrixPtr out = outMatSub->subMatrix(g * M, M);
|
||||
out->mul(*wMatSub, *in, 1.0, 0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (nullptr != this->biasParameter_) {
|
||||
REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
|
||||
this->addBias();
|
||||
}
|
||||
forwardActivation();
|
||||
}
|
||||
|
||||
void Conv3DLayer::backward(const UpdateCallback &callback) {
|
||||
backwardActivation();
|
||||
|
||||
if (biases_ && biases_->getWGrad()) {
|
||||
bpropBiases();
|
||||
biases_->getParameterPtr()->incUpdate(callback);
|
||||
}
|
||||
|
||||
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
||||
REGISTER_TIMER_INFO("BwdConv3D", getName().c_str());
|
||||
if (weights_[i]->getWGrad()) {
|
||||
bpropWeights(i);
|
||||
}
|
||||
if (this->needGradient_) {
|
||||
bpropData(i);
|
||||
}
|
||||
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
|
||||
weights_[i]->getParameterPtr()->incUpdate(callback);
|
||||
}
|
||||
}
|
||||
|
||||
void Conv3DLayer::bpropWeights(int i) {
|
||||
int M = M_[i];
|
||||
int N = N_[i];
|
||||
int K = K_[i];
|
||||
const MatrixPtr& inMat = getInputValue(i);
|
||||
int width = inMat->getWidth();
|
||||
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
|
||||
MatrixPtr wGradMat = weights_[i]->getWGrad();
|
||||
real* outGradData = getOutputGrad()->getData();
|
||||
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
|
||||
|
||||
for (int n = 0; n < batchSize; ++n) {
|
||||
colBuf_->vol2Col(inMat->getData() + n * width, channels_[i],
|
||||
imgSizeD_[i], imgSizeH_[i], imgSizeW_[i],
|
||||
filterSizeZ_[i], filterSizeY_[i], filterSize_[i],
|
||||
strideZ_[i], strideY_[i], stride_[i],
|
||||
paddingZ_[i], paddingY_[i], padding_[i]);
|
||||
outGradData += n * getOutputGrad()->getWidth();
|
||||
MatrixPtr outGradSub =
|
||||
Matrix::create(outGradData, groups_[i] * M, N, false, useGpu_);
|
||||
for (int g = 0; g < groups_[i]; ++g) {
|
||||
MatrixPtr inMatSub = colBuf_->subMatrix(g * K, K);
|
||||
MatrixPtr outG = outGradSub->subMatrix(g * M, M);
|
||||
MatrixPtr wGradSub = wGradMat->subMatrix(g * M, M);
|
||||
wGradSub->mul(*outG, *(inMatSub->getTranspose()), 1.0, 1.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Conv3DLayer::bpropData(int i) {
|
||||
int M = M_[i];
|
||||
int N = N_[i];
|
||||
int K = K_[i];
|
||||
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
|
||||
MatrixPtr wMat = weights_[i]->getW();
|
||||
real* outGradData = getOutputGrad()->getData();
|
||||
real* preGradData = getInputGrad(i)->getData();
|
||||
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
|
||||
for (int n = 0; n < batchSize; ++n) {
|
||||
outGradData += n * getOutputGrad()->getWidth();
|
||||
preGradData += n * getInputGrad(i)->getWidth();
|
||||
MatrixPtr outGradSub =
|
||||
Matrix::create(outGradData, M * groups_[i], N, false, useGpu_);
|
||||
for (int g = 0; g < groups_[i]; ++g) {
|
||||
MatrixPtr wMatSub = wMat->subMatrix(g * M, M);
|
||||
MatrixPtr outG = outGradSub->subMatrix(g * M, M);
|
||||
MatrixPtr inGradMatSub = colBuf_->subMatrix(g * K, K);
|
||||
inGradMatSub->mul(*(wMatSub->getTranspose()), *outG, 1.0, 0.0);
|
||||
}
|
||||
colBuf_->col2Vol(preGradData, channels_[i],
|
||||
imgSizeD_[i], imgSizeH_[i], imgSizeW_[i],
|
||||
filterSizeZ_[i], filterSizeY_[i], filterSize_[i],
|
||||
strideZ_[i], strideY_[i], stride_[i],
|
||||
paddingZ_[i], paddingY_[i], padding_[i],
|
||||
1.0, 1.0);
|
||||
}
|
||||
}
|
||||
|
||||
void Conv3DLayer::bpropBiases() {
|
||||
MatrixPtr outGradMat = getOutputGrad();
|
||||
if (this->sharedBiases_) {
|
||||
biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f);
|
||||
} else {
|
||||
biases_->getWGrad()->collectBias(*outGradMat, 1.0f);
|
||||
}
|
||||
}
|
||||
|
||||
void Conv3DLayer::addBias() {
|
||||
MatrixPtr outMat = getOutputValue();
|
||||
|
||||
if (this->sharedBiases_) {
|
||||
outMat->addSharedBias(*(biases_->getW()), 1.0f);
|
||||
} else {
|
||||
outMat->addBias(*(biases_->getW()), 1.0f);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,57 @@
|
||||
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ConvBaseLayer.h"
|
||||
#include "paddle/math/Matrix.h"
|
||||
#include "paddle/math/MathUtils.h"
|
||||
#include <vector>
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/**
|
||||
* @brief A subclass of convolution layer.
|
||||
* This layer expands input and use matrix multiplication to
|
||||
* calculate convolution operation.
|
||||
*/
|
||||
class Conv3DLayer : public ConvBaseLayer {
|
||||
public:
|
||||
explicit Conv3DLayer(const LayerConfig& config) : ConvBaseLayer(config) {}
|
||||
|
||||
~Conv3DLayer() {}
|
||||
|
||||
bool init(const LayerMap &layerMap, const ParameterMap ¶meterMap);
|
||||
|
||||
size_t getSize();
|
||||
|
||||
void forward(PassType passType);
|
||||
void addBias();
|
||||
|
||||
void backward(const UpdateCallback& callback);
|
||||
|
||||
void bpropBiases();
|
||||
void bpropData(int i);
|
||||
void bpropWeights(int i);
|
||||
|
||||
protected:
|
||||
// Figure out the dimensions for individual gemms.
|
||||
IntV M_; /// numFilters_ / filter_group_;
|
||||
IntV N_; /// channels_ * filterSizeZ_ * filterSize_ * filterSizeY_
|
||||
IntV K_; /// outputD_ * outputH_ * outputW_
|
||||
MatrixPtr colBuf_;
|
||||
};
|
||||
|
||||
} // namespace paddle
|
Loading…
Reference in new issue