commit
133f890346
@ -1,22 +0,0 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/increment_op.h"
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
increment,
|
||||
paddle::operators::IncrementKernel<paddle::platform::GPUPlace, float>,
|
||||
paddle::operators::IncrementKernel<paddle::platform::GPUPlace, double>,
|
||||
paddle::operators::IncrementKernel<paddle::platform::GPUPlace, int>,
|
||||
paddle::operators::IncrementKernel<paddle::platform::GPUPlace, int64_t>);
|
@ -1,40 +0,0 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
template <typename Place, typename T>
|
||||
class IncrementKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
virtual void Compute(const framework::ExecutionContext& context) const {
|
||||
auto* tensor = context.Output<framework::Tensor>("Out");
|
||||
auto* in = context.Input<framework::Tensor>("X");
|
||||
tensor->mutable_data<T>(in->place());
|
||||
|
||||
auto step = static_cast<T>(context.Attr<float>("step"));
|
||||
|
||||
auto eigen_out = framework::EigenVector<T>::Flatten(*tensor);
|
||||
auto eigen_in = framework::EigenVector<T>::Flatten(*in);
|
||||
auto& place = context.GetEigenDevice<Place>();
|
||||
eigen_out.device(place) = eigen_in + step;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -1,41 +0,0 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestIncrementOpPositiveStep(OpTest):
|
||||
"""Test increment op with positive step
|
||||
"""
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = "increment"
|
||||
self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
|
||||
self.attrs = {'step': 14.8}
|
||||
self.outputs = {'Out': self.inputs['X'] + self.attrs['step']}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestIncrementOpNegativeStep(OpTest):
|
||||
"""Test increment op with negative step
|
||||
"""
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = "increment"
|
||||
self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
|
||||
self.attrs = {'step': -3.8}
|
||||
self.outputs = {'Out': self.inputs['X'] + self.attrs['step']}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue