add mv op(c++, python, unit test) (#27024)
parent
f11a53ee76
commit
13a4c74efd
@ -0,0 +1,125 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/mv_op.h"
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class MVOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
void Make() override {
|
||||
AddInput("X", "The matrix input of mv op");
|
||||
AddInput("Vec", "The vector input of mv op");
|
||||
AddOutput("Out", "The output of mv op");
|
||||
AddComment(R"DOC(
|
||||
MV Operator.
|
||||
|
||||
This operator is used to perform matrix vector multiplication
|
||||
of the input tensors `X` and `Vec`.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class MVOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext *context) const override {
|
||||
OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "mv");
|
||||
OP_INOUT_CHECK(context->HasInput("Vec"), "Input", "Vec", "mv");
|
||||
OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "mv");
|
||||
|
||||
auto dim_x = context->GetInputDim("X");
|
||||
auto dim_y = context->GetInputDim("Vec");
|
||||
PADDLE_ENFORCE_EQ(
|
||||
dim_x.size(), 2,
|
||||
platform::errors::InvalidArgument(
|
||||
"The rank of input X should be 2, but is %d", dim_x.size()));
|
||||
PADDLE_ENFORCE_EQ(
|
||||
dim_y.size(), 1,
|
||||
platform::errors::InvalidArgument(
|
||||
"The rank of input Vec should be 1, but is %d", dim_y.size()));
|
||||
PADDLE_ENFORCE_EQ(dim_x[1] == dim_y[0], true,
|
||||
platform::errors::InvalidArgument(
|
||||
"The length of input X' second dim should equal the "
|
||||
"length of input Vec,"
|
||||
" but X[%d, %d], Vec[%d]",
|
||||
dim_x[0], dim_x[1], dim_y[0]));
|
||||
|
||||
framework::DDim dim_out = framework::make_ddim({dim_x[0]});
|
||||
|
||||
context->SetOutputDim("Out", dim_out);
|
||||
context->ShareLoD("X", /*->*/ "Out");
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class MVOpGradMaker : public framework::SingleGradOpMaker<T> {
|
||||
public:
|
||||
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
||||
|
||||
protected:
|
||||
void Apply(GradOpPtr<T> retv) const override {
|
||||
retv->SetType("mv_grad");
|
||||
retv->SetInput("X", this->Input("X"));
|
||||
retv->SetInput("Vec", this->Input("Vec"));
|
||||
retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
||||
retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
||||
retv->SetOutput(framework::GradVarName("Vec"), this->InputGrad("Vec"));
|
||||
}
|
||||
};
|
||||
|
||||
class MVOpGrad : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext *context) const override {
|
||||
OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "mv");
|
||||
OP_INOUT_CHECK(context->HasInput("Vec"), "Input", "Vec", "mv");
|
||||
OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
|
||||
"Out@GRAD", "mv");
|
||||
auto x_dims = context->GetInputDim("X");
|
||||
auto vec_dims = context->GetInputDim("Vec");
|
||||
|
||||
auto x_grad_name = framework::GradVarName("X");
|
||||
auto vec_grad_name = framework::GradVarName("Vec");
|
||||
|
||||
if (context->HasOutput(x_grad_name)) {
|
||||
context->SetOutputDim(x_grad_name, x_dims);
|
||||
}
|
||||
if (context->HasOutput(vec_grad_name)) {
|
||||
context->SetOutputDim(vec_grad_name, vec_dims);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
namespace plat = paddle::platform;
|
||||
|
||||
REGISTER_OPERATOR(mv, ops::MVOp, ops::MVOpMaker,
|
||||
ops::MVOpGradMaker<paddle::framework::OpDesc>,
|
||||
ops::MVOpGradMaker<paddle::imperative::OpBase>);
|
||||
REGISTER_OPERATOR(mv_grad, ops::MVOpGrad);
|
||||
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
mv, ops::MVKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::MVKernel<paddle::platform::CPUDeviceContext, double>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
mv_grad, ops::MVGradKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::MVGradKernel<paddle::platform::CPUDeviceContext, double>);
|
@ -0,0 +1,95 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/mv_op.h"
|
||||
#include "paddle/fluid/platform/gpu_launch_param_config.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T>
|
||||
__global__ void MVGradCUDAKernel(const int m, const int n, const T *dout,
|
||||
const T *vec, T *dx) {
|
||||
int idx = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
for (; idx < m * n; idx += blockDim.x * gridDim.x) {
|
||||
int i = idx / n;
|
||||
int j = idx % n;
|
||||
dx[idx] = dout[i] * vec[j];
|
||||
}
|
||||
}
|
||||
|
||||
// Using dimensional constraints on matrix multiplication, it is
|
||||
// straight-forward to check the following table for when X and Y
|
||||
// are both matrices.
|
||||
//
|
||||
// dX = | dOut Vec^T
|
||||
// dVec = | X^T dOut
|
||||
template <typename T>
|
||||
class MVGradKernel<platform::CUDADeviceContext, T>
|
||||
: public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &context) const override {
|
||||
auto *x = context.Input<framework::Tensor>("X");
|
||||
auto *vec = context.Input<framework::Tensor>("Vec");
|
||||
auto *dout =
|
||||
context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||
auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
|
||||
auto *dvec =
|
||||
context.Output<framework::Tensor>(framework::GradVarName("Vec"));
|
||||
|
||||
auto dim_x = x->dims();
|
||||
int m = dim_x[0];
|
||||
int n = dim_x[1];
|
||||
|
||||
dx->Resize(framework::make_ddim({m * n}));
|
||||
|
||||
// get data ptr
|
||||
const T *x_data = x->data<T>();
|
||||
const T *vec_data = vec->data<T>();
|
||||
const T *dout_data = dout->data<T>();
|
||||
|
||||
T *dx_data = dx->mutable_data<T>(context.GetPlace());
|
||||
T *dvec_data = dvec->mutable_data<T>(context.GetPlace());
|
||||
|
||||
auto &dev_ctx =
|
||||
context.template device_context<platform::CUDADeviceContext>();
|
||||
auto blas = math::GetBlas<platform::CUDADeviceContext, T>(dev_ctx);
|
||||
|
||||
// calculate dx
|
||||
auto stream = context.cuda_device_context().stream();
|
||||
auto config = GetGpuLaunchConfig1D(dev_ctx, m * n);
|
||||
MVGradCUDAKernel<
|
||||
T><<<config.block_per_grid.x, config.thread_per_block.x, 0, stream>>>(
|
||||
m, n, dout_data, vec_data, dx_data);
|
||||
|
||||
dx->Resize(framework::make_ddim({m, n}));
|
||||
|
||||
// calculate dvec
|
||||
blas.GEMV(true, dim_x[0], dim_x[1], static_cast<T>(1), x_data, dout_data,
|
||||
static_cast<T>(0), dvec_data);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
namespace plat = paddle::platform;
|
||||
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
mv, ops::MVKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::MVKernel<paddle::platform::CUDADeviceContext, double>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
mv_grad, ops::MVGradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::MVGradKernel<paddle::platform::CUDADeviceContext, double>);
|
@ -0,0 +1,105 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/operators/math/blas.h"
|
||||
#ifdef PADDLE_WITH_MKLDNN
|
||||
#include "paddle/fluid/platform/mkldnn_helper.h"
|
||||
#endif
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class MVKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &context) const override {
|
||||
auto *x = context.Input<framework::Tensor>("X");
|
||||
auto *vec = context.Input<framework::Tensor>("Vec");
|
||||
|
||||
auto *out = context.Output<framework::Tensor>("Out");
|
||||
|
||||
auto dim_x = x->dims();
|
||||
|
||||
// get data ptr
|
||||
const T *x_data = x->data<T>();
|
||||
const T *vec_data = vec->data<T>();
|
||||
T *out_data = out->mutable_data<T>(context.GetPlace());
|
||||
|
||||
auto &dev_ctx = context.template device_context<DeviceContext>();
|
||||
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
|
||||
|
||||
blas.GEMV(false, dim_x[0], dim_x[1], static_cast<T>(1), x_data, vec_data,
|
||||
static_cast<T>(0), out_data);
|
||||
}
|
||||
};
|
||||
|
||||
// Using dimensional constraints on matrix multiplication, it is
|
||||
// straight-forward to check the following table for when X and Y
|
||||
// are both matrices.
|
||||
//
|
||||
// dX = | dOut vec^T
|
||||
// dVec = | X^T dOut
|
||||
template <typename DeviceContext, typename T>
|
||||
class MVGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &context) const override {
|
||||
auto *x = context.Input<framework::Tensor>("X");
|
||||
auto *vec = context.Input<framework::Tensor>("Vec");
|
||||
auto *dout =
|
||||
context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||
auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
|
||||
auto *dvec =
|
||||
context.Output<framework::Tensor>(framework::GradVarName("Vec"));
|
||||
|
||||
auto dim_x = x->dims();
|
||||
int m = dim_x[0];
|
||||
int n = dim_x[1];
|
||||
|
||||
dx->Resize(framework::make_ddim({m * n}));
|
||||
|
||||
// get data ptr
|
||||
const T *x_data = x->data<T>();
|
||||
const T *vec_data = vec->data<T>();
|
||||
const T *dout_data = dout->data<T>();
|
||||
|
||||
T *dx_data = dx->mutable_data<T>(context.GetPlace());
|
||||
T *dvec_data = dvec->mutable_data<T>(context.GetPlace());
|
||||
|
||||
auto &dev_ctx = context.template device_context<DeviceContext>();
|
||||
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
|
||||
|
||||
// calculate dx
|
||||
for (int i = 0; i < m; ++i) {
|
||||
for (int j = 0; j < n; ++j)
|
||||
dx_data[i * n + j] = dout_data[i] * vec_data[j];
|
||||
}
|
||||
|
||||
dx->Resize(framework::make_ddim({m, n}));
|
||||
|
||||
// calculate dvec
|
||||
blas.GEMV(true, dim_x[0], dim_x[1], static_cast<T>(1), x_data, dout_data,
|
||||
static_cast<T>(0), dvec_data);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,94 @@
|
||||
#Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.layers as layers
|
||||
import paddle.fluid.core as core
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestMVOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "mv"
|
||||
self.init_config()
|
||||
self.inputs = {'X': self.x, 'Vec': self.vec}
|
||||
self.outputs = {'Out': np.dot(self.x, self.vec)}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X', 'Vec'], 'Out')
|
||||
|
||||
def init_config(self):
|
||||
self.x = np.random.random((5, 100)).astype("float64")
|
||||
self.vec = np.random.random((100)).astype("float64")
|
||||
|
||||
|
||||
class TestMVAPI(unittest.TestCase):
|
||||
def test_dygraph_api_out(self):
|
||||
paddle.disable_static()
|
||||
|
||||
self.x_data = np.random.random((5, 100)).astype("float64")
|
||||
self.x = paddle.to_tensor(self.x_data)
|
||||
self.vec_data = np.random.random((100)).astype("float64")
|
||||
self.vec = paddle.to_tensor(self.vec_data)
|
||||
z = paddle.mv(self.x, self.vec)
|
||||
np_z = z.numpy()
|
||||
z_expected = np.array(np.dot(self.x_data, self.vec_data))
|
||||
self.assertTrue(np.allclose(np_z, z_expected))
|
||||
|
||||
paddle.enable_static()
|
||||
|
||||
def test_static_graph(self):
|
||||
paddle.enable_static()
|
||||
|
||||
self.input_x = np.random.rand(5, 100).astype("float64")
|
||||
self.input_vec = np.random.rand(100).astype("float64")
|
||||
|
||||
data_x = paddle.static.data("x", shape=[5, 100], dtype="float64")
|
||||
data_vec = paddle.static.data("vec", shape=[100], dtype="float64")
|
||||
result_vec = paddle.mv(data_x, data_vec)
|
||||
self.place = paddle.CPUPlace()
|
||||
exe = paddle.static.Executor(self.place)
|
||||
res, = exe.run(feed={"x": self.input_x,
|
||||
"vec": self.input_vec},
|
||||
fetch_list=[result_vec])
|
||||
z_expected = np.array(np.dot(self.input_x, self.input_vec))
|
||||
self.assertTrue(np.allclose(res, z_expected))
|
||||
|
||||
|
||||
class TestMVError(unittest.TestCase):
|
||||
def test_input(self):
|
||||
def test_shape():
|
||||
paddle.enable_static()
|
||||
|
||||
self.input_x = np.random.rand(5, 100).astype("float64")
|
||||
self.input_vec = np.random.rand(100).astype("float64")
|
||||
|
||||
data_x = paddle.static.data("x", shape=[5, 100], dtype="float64")
|
||||
data_vec = paddle.static.data(
|
||||
"vec", shape=[100, 2], dtype="float64")
|
||||
result_vec = paddle.mv(data_x, data_vec)
|
||||
|
||||
self.assertRaises(ValueError, test_shape)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue