Wrap unsqueeze & squeeze ops

infer2
Yibing Liu 7 years ago
parent dbd7896678
commit 1443d762fd

@ -84,6 +84,8 @@ __all__ = [
'one_hot',
'autoincreased_step_counter',
'reshape',
'squeeze',
'unsqueeze',
'lod_reset',
'lrn',
'pad',
@ -4483,6 +4485,86 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
return helper.append_activation(out)
def squeeze(x, axes, inplace=False, name=None):
"""
Remove single-dimensional entries from the shape of a tensor. Takes a
parameter axes with a list of axes to squeeze. If axes is not provided, all
the single dimensions will be removed from the shape. If an axis is
selected with shape entry not equal to one, an error is raised.
Examples:
Case 1:
Given
X.shape = (1, 3, 1, 5)
and
axes = [0]
we get:
Out.shape = (3, 1, 5)
Case 2:
Given
X.shape = (1, 3, 1, 5)
and
axes = []
we get:
Out.shape = (3, 5)
Args:
x (Variable): The input variable to be squeezed.
axes (list): List of integers, indicating the dimensions to be squeezed.
name (str): Name for this layers.
Returns:
Variable: Output squeezed variable.
Examples:
.. code-block:: python
x = layers.data(name='x', shape=[5, 1, 10])
y = layers.sequeeze(x, axes=[1])
"""
helper = LayerHelper("squeeze", **locals())
out = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(
type="squeeze",
inputs={"X": x},
attrs={"axes": axes},
outputs={"Out": out})
return out
def unsqueeze(x, axes, inplace=False, name=None):
"""
Insert single-dimensional entries to the shape of a tensor. Takes one
required argument axes, a list of dimensions that will be inserted.
Dimension indices in axes are as seen in the output tensor.
For example:
Given a tensor such that tensor with shape [3, 4, 5],
then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
Args:
x (Variable): The input variable to be unsqueezed.
axes (list): List of integers, indicating the dimensions to be inserted.
name (str): Name for this layers.
Returns:
Variable: Output unsqueezed variable.
Examples:
.. code-block:: python
x = layers.data(name='x', shape=[5, 10])
y = layers.unsequeeze(x, axes=[1])
"""
helper = LayerHelper("unsqueeze", **locals())
out = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(
type="unsqueeze",
inputs={"X": x},
attrs={"axes": axes},
outputs={"Out": out})
return out
def lod_reset(x, y=None, target_lod=None):
"""

@ -240,6 +240,22 @@ class TestBook(unittest.TestCase):
self.assertIsNotNone(layers.softmax(hid))
print(str(program))
def test_sequence_unsqueeze(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[8,2], dtype='float32')
out = layers.unsqueeze(x=x, axes=[1])
self.assertIsNotNone(out)
print(str(program))
def test_squeeze(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
out = layers.squeeze(x=x, axes=[0])
self.assertIsNotNone(out)
print(str(program))
def test_lrn(self):
program = Program()
with program_guard(program):
@ -261,6 +277,7 @@ class TestBook(unittest.TestCase):
out = layers.sequence_reshape(input=x, new_dim=16)
self.assertIsNotNone(out)
print(str(program))
def test_im2sequence(self):
program = Program()

Loading…
Cancel
Save