Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into develop

revert-4814-Add_sequence_project_op
zchen0211 8 years ago
commit 147c3f523a

@ -19,7 +19,7 @@ cc_test(scope_test SRCS scope_test.cc DEPS scope)
proto_library(framework_proto SRCS framework.proto)
cc_library(attribute SRCS attribute.cc DEPS framework_proto)
cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS attribute)
cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS attribute ddim)
cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute)
cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto proto_desc)

@ -302,7 +302,7 @@ std::vector<std::unique_ptr<OpDescBind>> MakeOpGrad(
return grad_op_descs; // empty vector
}
grad_op_descs = OpRegistry::CreateGradOpDescs(*op_desc);
grad_op_descs = OpRegistry::CreateGradOpDescs(op_desc.get());
std::list<std::unique_ptr<OpDescBind>> pending_fill_zeros_ops;
for (auto& desc : grad_op_descs) {

@ -58,6 +58,8 @@ class MulOpMaker : public OpProtoAndCheckerMaker {
AddInput("X", "A");
AddInput("Y", "B");
AddOutput("Out", "Out");
AddAttr<int>("x_num_col_dims", "").SetDefault(1).EqualGreaterThan(1);
AddAttr<int>("y_num_col_dims", "").SetDefault(1).EqualGreaterThan(1);
AddComment("Mul");
}
};
@ -440,6 +442,28 @@ TEST(Backward, simple_single_op) {
std::vector<std::string>({f::GradVarName("b")}));
}
TEST(Backward, default_attribute) {
f::ProgramDesc *program_desc = GetNewProgramDesc();
f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
f::BlockDescBind *block = program.Block(0);
f::OpDescBind *op = block->AppendOp();
op->SetType("mul");
op->SetInput("X", {"x"});
op->SetInput("Y", {"y"});
op->SetOutput("Out", {"out"});
AppendBackward(program, {});
ASSERT_EQ(block->AllOps().size(), 2UL);
EXPECT_EQ(boost::get<int>(op->GetAttr("x_num_col_dims")), 1);
EXPECT_EQ(boost::get<int>(op->GetAttr("y_num_col_dims")), 1);
f::OpDescBind *grad_op = block->AllOps()[1];
ASSERT_EQ(grad_op->Type(), "mul_grad");
EXPECT_EQ(boost::get<int>(grad_op->GetAttr("x_num_col_dims")), 1);
EXPECT_EQ(boost::get<int>(grad_op->GetAttr("y_num_col_dims")), 1);
}
TEST(Backward, simple_mult_op) {
f::ProgramDesc *program_desc = GetNewProgramDesc();
f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);

@ -74,6 +74,12 @@ void BlockDescBind::Sync() {
for (auto &op_desc : ops_) {
op_field.AddAllocated(op_desc->Proto());
}
auto &var_field = *this->desc_->mutable_vars();
var_field.Clear();
var_field.Reserve(static_cast<int>(vars_.size()));
for (auto &var_desc : vars_) {
var_field.AddAllocated(var_desc.second->Proto());
}
need_update_ = false;
}
}

@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <deque>
#include <memory>
#include <unordered_map>
#include <vector>
#include "paddle/framework/op_desc.h"

@ -28,7 +28,6 @@ inline DataType ToDataType(std::type_index type) {
return DataType::INT32;
} else {
PADDLE_THROW("Not supported");
return static_cast<DataType>(-1);
}
}

@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
syntax = "proto2";
option optimize_for = LITE_RUNTIME;
package paddle.framework;
enum AttrType {

@ -13,7 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_desc.h"
#include <functional>
#include <unordered_map>
#include "paddle/framework/block_desc.h"
#include "paddle/framework/operator.h"
namespace paddle {
namespace framework {
@ -25,6 +28,7 @@ OpDescBind::OpDescBind(const std::string &type, const VariableNameMap &inputs,
inputs_ = inputs;
outputs_ = outputs;
attrs_ = attrs;
need_update_ = true;
}
OpDesc *OpDescBind::Proto() {
@ -184,5 +188,38 @@ void OpDescBind::Sync() {
need_update_ = false;
}
}
using InferShapeFuncMap =
std::unordered_map<std::string /*op_type*/,
std::function<void(InferShapeContext *)>>;
static InferShapeFuncMap &InferShapeFuncs() {
static InferShapeFuncMap *g_map = nullptr;
if (g_map == nullptr) {
g_map = new InferShapeFuncMap();
auto &info_map = OpInfoMap::Instance();
// all registered kernels
for (auto &pair : OperatorWithKernel::AllOpKernels()) {
auto &info = info_map.Get(pair.first);
// use empty type here to avoid runtime checks.
auto op =
static_cast<OperatorWithKernel *>(info.Creator()("", {}, {}, {}));
g_map->insert(
{pair.first, [op](InferShapeContext *ctx) { op->InferShape(ctx); }});
}
}
return *g_map;
}
void OpDescBind::InferShape(const BlockDescBind &block) const {
auto &funcs = InferShapeFuncs();
auto it = funcs.find(this->Type());
if (it == funcs.end()) {
PADDLE_THROW("Operator %s has not been registered", this->Type());
}
CompileTimeInferShapeContext ctx(*this, block);
it->second(&ctx);
}
} // namespace framework
} // namespace paddle

@ -52,8 +52,6 @@ class OpDescBind {
void SetOutput(const std::string &param_name,
const std::vector<std::string> &args);
std::string DebugString() { return this->Proto()->DebugString(); }
bool HasAttr(const std::string &name) const {
return attrs_.find(name) != attrs_.end();
}
@ -97,6 +95,13 @@ class OpDescBind {
const VariableNameMap &Outputs() const { return outputs_; }
AttributeMap *MutableAttrMap() {
this->need_update_ = true;
return &this->attrs_;
}
void InferShape(const BlockDescBind &block) const;
private:
template <typename MapType>
static std::vector<typename MapType::key_type> MapKeys(const MapType &map) {

@ -60,9 +60,14 @@ std::unique_ptr<OperatorBase> OpRegistry::CreateOp(const OpDescBind& op_desc) {
}
std::vector<std::unique_ptr<OpDescBind>> OpRegistry::CreateGradOpDescs(
const OpDescBind& op_desc) {
auto& info = OpInfoMap::Instance().Get(op_desc.Type());
return info.grad_op_maker_(op_desc);
OpDescBind* op_desc) {
auto& info = OpInfoMap::Instance().Get(op_desc->Type());
if (info.Checker() != nullptr) {
info.Checker()->Check(*op_desc->MutableAttrMap());
}
return info.grad_op_maker_(*op_desc);
}
} // namespace framework

@ -80,7 +80,7 @@ class OpRegistry {
static std::unique_ptr<OperatorBase> CreateOp(const OpDesc& op_desc);
static std::vector<std::unique_ptr<OpDescBind>> CreateGradOpDescs(
const OpDescBind& op_desc);
OpDescBind* op_desc);
static std::unique_ptr<OperatorBase> CreateOp(const OpDescBind& op_desc);
};

@ -205,13 +205,13 @@ void OperatorBase::GenerateTemporaryNames() {
}
template <>
const Tensor* InferShapeContext::Input<Tensor>(const std::string& name) const {
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
auto* var = InputVar(name);
return var == nullptr ? nullptr : GetTensorFromVar(var);
}
template <>
const std::vector<const Tensor*> InferShapeContext::MultiInput<Tensor>(
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
const std::string& name) const {
auto names = op().Inputs(name);
std::vector<const Tensor*> res;
@ -225,13 +225,13 @@ const std::vector<const Tensor*> InferShapeContext::MultiInput<Tensor>(
}
template <>
Tensor* InferShapeContext::Output<Tensor>(const std::string& name) const {
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
auto var = OutputVar(name);
return var == nullptr ? nullptr : var->GetMutable<LoDTensor>();
}
template <>
std::vector<Tensor*> InferShapeContext::MultiOutput<Tensor>(
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
const std::string& name) const {
auto names = op().Outputs(name);
std::vector<Tensor*> res;

@ -57,7 +57,6 @@ inline std::string GradVarName(const std::string& var_name) {
}
class OperatorBase;
class InferShapeContext;
class ExecutionContext;
extern const Tensor* GetTensorFromVar(const Variable* var);
@ -169,10 +168,11 @@ class NOP : public OperatorBase {
}
};
class InferShapeContext {
class ExecutionContext {
public:
InferShapeContext(const OperatorBase& op, const Scope& scope)
: op_(op), scope_(scope) {}
ExecutionContext(const OperatorBase& op, const Scope& scope,
const platform::DeviceContext& device_context)
: op_(op), scope_(scope), device_context_(device_context) {}
const OperatorBase& op() const { return op_; }
@ -278,31 +278,6 @@ class InferShapeContext {
out_tensor->set_lod(in_tensor.lod());
}
private:
const OperatorBase& op_;
const Scope& scope_;
};
template <>
const Tensor* InferShapeContext::Input<Tensor>(const std::string& name) const;
template <>
const std::vector<const Tensor*> InferShapeContext::MultiInput<Tensor>(
const std::string& name) const;
template <>
Tensor* InferShapeContext::Output<Tensor>(const std::string& name) const;
template <>
std::vector<Tensor*> InferShapeContext::MultiOutput<Tensor>(
const std::string& name) const;
class ExecutionContext : public InferShapeContext {
public:
ExecutionContext(const OperatorBase& op, const Scope& scope,
const platform::DeviceContext& device_context)
: InferShapeContext(op, scope), device_context_(device_context) {}
template <typename PlaceType,
typename DeviceType = typename platform::EigenDeviceConverter<
PlaceType>::EigenDeviceType>
@ -315,10 +290,26 @@ class ExecutionContext : public InferShapeContext {
}
private:
const OperatorBase& op_;
const Scope& scope_;
const platform::DeviceContext& device_context_;
};
class CompileTimeInferShapeContext : public InferShapeContextBase {
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
const std::string& name) const;
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
const std::string& name) const;
class CompileTimeInferShapeContext : public InferShapeContext {
public:
CompileTimeInferShapeContext(const OpDescBind& op, const BlockDescBind& block)
: op_(op), block_(block) {}
@ -414,7 +405,7 @@ class CompileTimeInferShapeContext : public InferShapeContextBase {
const BlockDescBind& block_;
};
class RuntimeInferShapeContext : public InferShapeContextBase {
class RuntimeInferShapeContext : public InferShapeContext {
public:
RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
: op_(op), scope_(scope) {}
@ -612,7 +603,7 @@ class OperatorWithKernel : public OperatorBase {
});
}
virtual void InferShape(InferShapeContextBase* ctx) const = 0;
virtual void InferShape(InferShapeContext* ctx) const = 0;
protected:
// indicate kernel DataType by input data. Defaultly all input data must be

@ -113,7 +113,7 @@ class OpWithKernelTest : public OperatorWithKernel {
using OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContextBase* ctx) const override {}
void InferShape(framework::InferShapeContext* ctx) const override {}
DataType IndicateDataType(const ExecutionContext& ctx) const override {
return DataType::FP32;
}

@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <memory>
#include <vector>
#include "paddle/framework/framework.pb.h"
#include "paddle/platform/macros.h"
@ -31,8 +32,6 @@ class ProgramDescBind {
BlockDescBind *Block(size_t idx) { return blocks_[idx].get(); }
std::string DebugString() { return Proto()->DebugString(); }
size_t Size() const { return blocks_.size(); }
ProgramDesc *Proto();

@ -20,11 +20,11 @@ namespace paddle {
namespace framework {
// TODO(longfei): Once after both CompileTimeInferShapeContext and
// RuntimeInferShapeContext get merged, we can rename InferShapeContextBase into
// RuntimeInferShapeContext get merged, we can rename InferShapeContext into
// InferShapeContext so to replace the current InferShapeContext.
class InferShapeContextBase {
class InferShapeContext {
public:
virtual ~InferShapeContextBase() {}
virtual ~InferShapeContext() {}
virtual bool HasInput(const std::string &name) const = 0;
virtual bool HasOutput(const std::string &name) const = 0;

@ -95,6 +95,19 @@ class Tensor {
template <typename T>
inline void CopyFrom(const Tensor& src, const platform::Place& dst_place);
/**
* @brief Copy the content of an external vector to a tensor.
*
* @param[in] src The external vector.
* @param[in] ctx The device context contains place where to store.
*
* * @note CopyFromVector assumes that the tensor has been resized
* before invoking.
*/
template <typename T>
inline void CopyFromVector(const std::vector<T>& src,
const platform::Place& dst_place);
/**
* @brief Return the slice of the tensor.
*

@ -123,6 +123,29 @@ inline void Tensor::CopyFrom(const Tensor& src,
#endif
}
template <typename T>
inline void Tensor::CopyFromVector(const std::vector<T>& src,
const platform::Place& dst_place) {
auto src_ptr = static_cast<const void*>(src.data());
platform::CPUPlace src_place;
auto dst_ptr = static_cast<void*>(mutable_data<T>(dst_place));
auto size = src.size() * sizeof(T);
if (platform::is_cpu_place(dst_place)) {
memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr, src_place,
src_ptr, size);
}
#ifdef PADDLE_WITH_CUDA
else if (platform::is_gpu_place(dst_place)) {
memory::Copy(boost::get<platform::GPUPlace>(dst_place), dst_ptr, src_place,
src_ptr, size, 0);
}
PADDLE_ENFORCE(cudaStreamSynchronize(0),
"cudaStreamSynchronize failed in Tensor CopyFromVector");
#endif
}
template <typename T>
inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
check_memory_size<T>();

@ -263,6 +263,93 @@ TEST(Tensor, CopyFrom) {
#endif
}
TEST(Tensor, CopyFromVector) {
using namespace paddle::framework;
using namespace paddle::platform;
{
std::vector<int> src_vec = {1, 2, 3, 4, 5, 6, 7, 8, 9};
Tensor cpu_tensor;
// Copy to CPU Tensor
cpu_tensor.Resize(make_ddim({3, 3}));
auto cpu_place = new paddle::platform::CPUPlace();
cpu_tensor.CopyFromVector<int>(src_vec, *cpu_place);
// Compare Tensors
const int* cpu_ptr = cpu_tensor.data<int>();
const int* src_ptr = src_vec.data();
ASSERT_NE(src_ptr, cpu_ptr);
for (size_t i = 0; i < 9; ++i) {
EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
}
src_vec.erase(src_vec.begin(), src_vec.begin() + 5);
cpu_tensor.Resize(make_ddim({2, 2}));
cpu_tensor.CopyFromVector<int>(src_vec, *cpu_place);
cpu_ptr = cpu_tensor.data<int>();
src_ptr = src_vec.data();
ASSERT_NE(src_ptr, cpu_ptr);
for (size_t i = 0; i < 5; ++i) {
EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
}
delete cpu_place;
}
#ifdef PADDLE_WITH_CUDA
{
std::vector<int> src_vec = {1, 2, 3, 4, 5, 6, 7, 8, 9};
Tensor cpu_tensor;
Tensor gpu_tensor;
Tensor dst_tensor;
// Copy to CPU Tensor
cpu_tensor.Resize(make_ddim({3, 3}));
auto cpu_place = new paddle::platform::CPUPlace();
cpu_tensor.CopyFromVector<int>(src_vec, *cpu_place);
// Copy to GPUTensor
gpu_tensor.Resize(make_ddim({3, 3}));
auto gpu_place = new paddle::platform::GPUPlace();
gpu_tensor.CopyFromVector<int>(src_vec, *gpu_place);
// Copy from GPU to CPU tensor for comparison
dst_tensor.CopyFrom<int>(gpu_tensor, *cpu_place);
// Compare Tensors
const int* src_ptr = src_vec.data();
const int* cpu_ptr = cpu_tensor.data<int>();
const int* dst_ptr = dst_tensor.data<int>();
ASSERT_NE(src_ptr, cpu_ptr);
ASSERT_NE(src_ptr, dst_ptr);
for (size_t i = 0; i < 9; ++i) {
EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
EXPECT_EQ(src_ptr[i], dst_ptr[i]);
}
src_vec.erase(src_vec.begin(), src_vec.begin() + 5);
cpu_tensor.Resize(make_ddim({2, 2}));
cpu_tensor.CopyFromVector<int>(src_vec, *cpu_place);
gpu_tensor.Resize(make_ddim({2, 2}));
gpu_tensor.CopyFromVector<int>(src_vec, *gpu_place);
dst_tensor.CopyFrom<int>(gpu_tensor, *cpu_place);
src_ptr = src_vec.data();
cpu_ptr = cpu_tensor.data<int>();
dst_ptr = dst_tensor.data<int>();
ASSERT_NE(src_ptr, cpu_ptr);
ASSERT_NE(src_ptr, dst_ptr);
for (size_t i = 0; i < 5; ++i) {
EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
EXPECT_EQ(src_ptr[i], dst_ptr[i]);
}
delete cpu_place;
delete gpu_place;
}
#endif
}
TEST(Tensor, ReshapeToMatrix) {
using namespace paddle::framework;
using namespace paddle::platform;

@ -15,6 +15,7 @@
#pragma once
#include <functional>
#include <map>
#include <memory>
#include "paddle/platform/variant.h"
namespace paddle {

@ -162,4 +162,4 @@ int main(int argc, char** argv) {
return RUN_ALL_TESTS();
}
#endif /* PADDLE_ONLY_CPU */
#endif

@ -182,7 +182,7 @@ BuddyAllocator::PoolSet::iterator BuddyAllocator::RefillPool() {
max_chunk_size_ = platform::GpuMaxChunkSize();
}
}
#endif // PADDLE_ONLY_CPU
#endif
// Allocate a new maximum sized block
size_t index = 0;

@ -134,7 +134,7 @@ void GPUAllocator::Free(void* p, size_t size, size_t index) {
bool GPUAllocator::UseGpu() const { return true; }
#endif // PADDLE_ONLY_CPU
#endif
} // namespace detail
} // namespace memory

@ -51,7 +51,7 @@ class GPUAllocator : public SystemAllocator {
size_t gpu_alloc_size_ = 0;
size_t fallback_alloc_size_ = 0;
};
#endif // PADDLE_ONLY_CPU
#endif
} // namespace detail
} // namespace memory

@ -62,4 +62,4 @@ TEST(GPUAllocator, Alloc) {
TestAllocator(a, 2048);
TestAllocator(a, 0);
}
#endif // PADDLE_ONLY_CPU
#endif

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save