|
|
|
@ -34,9 +34,7 @@ limitations under the License. */
|
|
|
|
|
break; \
|
|
|
|
|
}
|
|
|
|
|
#define REP_EXPAND_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_TEMPLATE, ~)
|
|
|
|
|
#define COND(n) \
|
|
|
|
|
BOOST_PP_GREATER_EQUAL(BOOST_PP_DIV(n, MAX_RANK_SUPPORTED), \
|
|
|
|
|
BOOST_PP_MOD(n, MAX_RANK_SUPPORTED))
|
|
|
|
|
#define COND(n) BOOST_PP_GREATER_EQUAL(n, BOOST_PP_MOD(n, MAX_RANK_SUPPORTED))
|
|
|
|
|
#define EXPAND_GRAD_CASE(n) \
|
|
|
|
|
case n: { \
|
|
|
|
|
ExpandBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \
|
|
|
|
@ -145,33 +143,29 @@ class ExpandGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
// auto& expand_times = context.Attr<std::vector<int>>("expand_times");
|
|
|
|
|
auto expand_times = get_expand_times(context);
|
|
|
|
|
auto x_dims = in0->dims();
|
|
|
|
|
// 1. reshape_dims_vec is the broadcast parameter. For each dimension i,
|
|
|
|
|
// if expand_times[i] > 1 and x_dims[i] > 1, i will be splitted to two
|
|
|
|
|
// dimensions [expand_times[i], x_dims[i]].
|
|
|
|
|
// 1. reshape_dims_vec is the broadcast parameter.
|
|
|
|
|
// 2. reduce_dims_vec is the dimension parameter to compute gradients. For
|
|
|
|
|
// each dimension expanded, the gradients should be summed to original
|
|
|
|
|
// size.
|
|
|
|
|
std::vector<int> reshape_dims_vec;
|
|
|
|
|
std::vector<int> reduce_dims_vec;
|
|
|
|
|
for (size_t i = 0; i < expand_times.size(); ++i) {
|
|
|
|
|
if (expand_times[i] == 1) {
|
|
|
|
|
reshape_dims_vec.push_back(x_dims[i]);
|
|
|
|
|
} else {
|
|
|
|
|
if (x_dims[i] == 1) {
|
|
|
|
|
reduce_dims_vec.push_back(reshape_dims_vec.size());
|
|
|
|
|
reshape_dims_vec.push_back(expand_times[i]);
|
|
|
|
|
} else {
|
|
|
|
|
reduce_dims_vec.push_back(reshape_dims_vec.size());
|
|
|
|
|
reshape_dims_vec.push_back(expand_times[i]);
|
|
|
|
|
reshape_dims_vec.push_back(x_dims[i]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
reduce_dims_vec.push_back(reshape_dims_vec.size());
|
|
|
|
|
reshape_dims_vec.push_back(expand_times[i]);
|
|
|
|
|
reshape_dims_vec.push_back(x_dims[i]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int dims = reshape_dims_vec.size() * MAX_RANK_SUPPORTED +
|
|
|
|
|
reduce_dims_vec.size() - MAX_RANK_SUPPORTED - 1;
|
|
|
|
|
int dims = reduce_dims_vec.size();
|
|
|
|
|
|
|
|
|
|
bool just_copy = true;
|
|
|
|
|
for (size_t i = 0; i < expand_times.size(); i++) {
|
|
|
|
|
if (expand_times[i] != 1) {
|
|
|
|
|
just_copy = false;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// no need reduce, just copy
|
|
|
|
|
if (reduce_dims_vec.size() == 0) {
|
|
|
|
|
if (just_copy) {
|
|
|
|
|
auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
|
auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
out0->mutable_data<T>(context.GetPlace());
|
|
|
|
@ -179,7 +173,7 @@ class ExpandGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
out0);
|
|
|
|
|
} else {
|
|
|
|
|
switch (dims) {
|
|
|
|
|
REP_EXPAND_GRAD_TEMPLATE(72)
|
|
|
|
|
REP_EXPAND_GRAD_TEMPLATE(MAX_RANK_SUPPORTED)
|
|
|
|
|
default:
|
|
|
|
|
PADDLE_ENFORCE(
|
|
|
|
|
false, "Only support tensor with rank being between 1 and 6.");
|
|
|
|
@ -192,8 +186,8 @@ class ExpandGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
void ExpandBackward(const framework::ExecutionContext& context,
|
|
|
|
|
const std::vector<int>& reshape_dims_vec,
|
|
|
|
|
const std::vector<int>& reduce_dims_vec) const {
|
|
|
|
|
size_t reshape_size = Dims / MAX_RANK_SUPPORTED + 1;
|
|
|
|
|
size_t reduce_size = Dims % MAX_RANK_SUPPORTED + 1;
|
|
|
|
|
size_t reshape_size = reshape_dims_vec.size();
|
|
|
|
|
size_t reduce_size = reduce_dims_vec.size();
|
|
|
|
|
PADDLE_ENFORCE_EQ(reshape_size, reshape_dims_vec.size(),
|
|
|
|
|
"Inconsistent size between template Dims and "
|
|
|
|
|
"reshape dimensions.");
|
|
|
|
@ -204,11 +198,11 @@ class ExpandGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
out0->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto x_grad = EigenVector<T>::Flatten(*out0);
|
|
|
|
|
Eigen::DSizes<int, Dims / MAX_RANK_SUPPORTED + 1> reshape_dims;
|
|
|
|
|
Eigen::DSizes<int, Dims * 2> reshape_dims;
|
|
|
|
|
for (size_t i = 0; i < reshape_size; ++i) {
|
|
|
|
|
reshape_dims[i] = reshape_dims_vec[i];
|
|
|
|
|
}
|
|
|
|
|
Eigen::DSizes<int, Dims % MAX_RANK_SUPPORTED + 1> reduce_dims;
|
|
|
|
|
Eigen::DSizes<int, Dims> reduce_dims;
|
|
|
|
|
for (size_t i = 0; i < reduce_size; ++i) {
|
|
|
|
|
reduce_dims[i] = reduce_dims_vec[i];
|
|
|
|
|
}
|
|
|
|
|