Merge branch 'develop' of https://github.com/baidu/Paddle into conv_op
commit
14ae805014
@ -0,0 +1,59 @@
|
||||
## Operator's Parameter Name Convention
|
||||
|
||||
To make the operator document itself more clear, we recommend operator names obey the listing conventions.
|
||||
|
||||
### OpProtoMaker names
|
||||
|
||||
When defining an operator in Paddle, a corresponding [OpProtoMaker](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L170) (TODO: OpProtoMaker Doc)need to be defined. All the Input/Output and Attributes will write into the [OpProto](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L61) , and will be used in client language to create operator.
|
||||
|
||||
- Input/Output.
|
||||
- Input/Output names follow the **CamelCase**. e.g. `X`, `Y`, `Matrix`, `LastAxisInMatrix`. Input/Output much more like Variables, we prefer to meaningful English words.
|
||||
- If an operator's Input/Output are tensors in math, not match to any meaningful words, input name should starts from `X`. e.g. `X`, `Y`, and output name should starts from `Out`. e.g. `Out`. This rule intends making operators which have few inputs/outputs unified.
|
||||
|
||||
- Attribute.
|
||||
- Attribute name follows the **camelCase**. e.g. `x`, `y`, `axis`, `rowwiseMatrix`. Also, attribute name prefers to meaningful English words.
|
||||
|
||||
- Comments.
|
||||
- Input/Output/Attr comment follow the format of **(type,default value) usage**, corresponding to which type it can be and how it will be used in the operator. e.g. Attribute in Accumulator`"gamma" `,`(float, default 1.0) Accumulation multiplier`.
|
||||
- Operator comment format of` R"DOC(your comment here)DOC"`. You should explain the input/output of the operator first. If there is math calculation in this operator, you should write the equation in the comment. e.g. `Out = X + Y`.
|
||||
|
||||
- Order.
|
||||
- Follow the order of Input/Output, then Attribute, then Comments. See the example in best practice.
|
||||
|
||||
### Best Practice
|
||||
|
||||
Here we give some examples to show how these rules will be used.
|
||||
|
||||
- The operator has one input, one output. e.g.`relu`, inputs: `X`, outputs: `Out`.
|
||||
|
||||
- The operator has two input, one output. e.g. `rowwise_add`, inputs : `X`, `Y`, outputs : `Out`.
|
||||
|
||||
- The operator contains attribute. e.g. `cosine`, inputs : `X`, `axis`, outputs : `Out`.
|
||||
|
||||
We give a full example of Accumulator Operator.
|
||||
|
||||
```c++
|
||||
class AccumulateOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
AccumulateOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "(Tensor) The input tensor that has to be accumulated to the output tensor. If the output size is not the same as input size, the output tensor is first reshaped and initialized to zero, and only then, accumulation is done.");
|
||||
AddOutput("Out", "(Tensor) Accumulated output tensor");
|
||||
AddAttr<float>("gamma", "(float, default 1.0) Accumulation multiplier");
|
||||
AddComment(R"DOC(
|
||||
Accumulate operator accumulates the input tensor to the output tensor. If the
|
||||
output tensor already has the right size, we add to it; otherwise, we first
|
||||
initialize the output tensor to all zeros, and then do accumulation. Any
|
||||
further calls to the operator, given that no one else fiddles with the output
|
||||
in the interim, will do simple accumulations.
|
||||
Accumulation is done as shown:
|
||||
|
||||
Out = 1*X + gamma*Out
|
||||
|
||||
where X is the input tensor, Y is the output tensor and gamma is the multiplier
|
||||
argument.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
```
|
@ -1,39 +1,5 @@
|
||||
py_test(test_net SRCS test_net.py)
|
||||
|
||||
py_test(test_scope SRCS test_scope.py)
|
||||
|
||||
py_test(test_tensor SRCS test_tensor.py)
|
||||
py_test(test_mul_op SRCS test_mul_op.py)
|
||||
py_test(test_cos_sim_op SRCS test_cos_sim_op.py)
|
||||
|
||||
py_test(test_mean_op SRCS test_mean_op.py)
|
||||
|
||||
py_test(test_protobuf SRCS test_protobuf.py)
|
||||
|
||||
py_test(test_add_two_op SRCS test_add_two_op.py)
|
||||
py_test(test_sigmoid_op SRCS test_sigmoid_op.py)
|
||||
py_test(test_softmax_op SRCS test_softmax_op.py)
|
||||
py_test(test_cross_entropy_op SRCS test_cross_entropy_op.py)
|
||||
py_test(test_gather_op SRCS test_gather_op.py)
|
||||
py_test(test_scatter_op SRCS test_scatter_op.py)
|
||||
py_test(test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py)
|
||||
py_test(test_top_k_op SRCS test_top_k_op.py)
|
||||
|
||||
py_test(test_rowwise_add_op SRCS test_rowwise_add_op.py)
|
||||
|
||||
py_test(test_default_scope_funcs SRCS test_default_scope_funcs.py)
|
||||
|
||||
py_test(test_operator SRCS test_operator.py)
|
||||
py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py)
|
||||
py_test(test_uniform_random_op SRCS test_uniform_random_op.py)
|
||||
py_test(test_recurrent_op SRCS test_recurrent_op.py)
|
||||
py_test(test_sgd_op SRCS test_sgd_op.py)
|
||||
py_test(test_gradient_checker SRCS test_gradient_checker.py)
|
||||
py_test(test_lookup_table SRCS test_lookup_table.py)
|
||||
py_test(test_scale_and_identity_op SRCS test_scale_and_identity_op.py)
|
||||
py_test(test_sum_op SRCS test_sum_op.py)
|
||||
py_test(mnist SRCS mnist.py)
|
||||
py_test(test_concat_op SRCS test_concat_op.py)
|
||||
py_test(test_squared_l2_distance_op SRCS test_squared_l2_distance_op.py)
|
||||
py_test(test_conv2d SRCS test_conv2d_op.py)
|
||||
py_test(test_reshape_op SRCS test_reshape_op.py)
|
||||
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
|
||||
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
|
||||
foreach(src ${TEST_OPS})
|
||||
py_test(${src} SRCS ${src}.py)
|
||||
endforeach()
|
||||
|
Loading…
Reference in new issue