add unit accessor (#23703)
* add unit accessor in fleet, support DownpourUnitAccessor * test=developrevert-23830-2.0-beta
parent
6b4a51bae3
commit
15ce8e21d8
@ -0,0 +1,94 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Test fleet."""
|
||||
|
||||
from __future__ import print_function
|
||||
import os
|
||||
import unittest
|
||||
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
|
||||
|
||||
|
||||
class TestFleet1(unittest.TestCase):
|
||||
"""
|
||||
Test cases for fleet minimize.
|
||||
"""
|
||||
|
||||
def setUp(self):
|
||||
"""Set up, set envs."""
|
||||
os.environ["PADDLE_TRAINERS_NUM"] = "2"
|
||||
os.environ[
|
||||
"PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001,127.0.0.2:36001"
|
||||
|
||||
def test_pslib_1(self):
|
||||
"""Test cases for pslib."""
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
|
||||
from paddle.fluid.incubate.fleet.parameter_server.pslib import PSLib
|
||||
from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
|
||||
try:
|
||||
import netifaces
|
||||
except:
|
||||
print("warning: no netifaces, skip test_pslib_1")
|
||||
return
|
||||
os.environ["POD_IP"] = "127.0.0.1"
|
||||
os.environ["PADDLE_PORT"] = "36001"
|
||||
os.environ["TRAINING_ROLE"] = "TRAINER"
|
||||
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
|
||||
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002"
|
||||
os.environ["PADDLE_TRAINER_ID"] = "0"
|
||||
role_maker = GeneralRoleMaker()
|
||||
role_maker.generate_role()
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
fleet.init(role_maker)
|
||||
train_program = fluid.Program()
|
||||
startup_program = fluid.Program()
|
||||
scope = fluid.Scope()
|
||||
with fluid.program_guard(train_program, startup_program):
|
||||
show = fluid.layers.data(name="show", shape=[-1, 1], \
|
||||
dtype="int64", lod_level=1, append_batch_size=False)
|
||||
emb = fluid.layers.embedding(input=show, size=[1, 1], \
|
||||
is_sparse=True, is_distributed=True, \
|
||||
param_attr=fluid.ParamAttr(name="embedding"))
|
||||
fc = fluid.layers.fc(input=emb, size=1, act=None)
|
||||
label = fluid.layers.data(name="click", shape=[-1, 1], \
|
||||
dtype="int64", lod_level=1, append_batch_size=False)
|
||||
label_cast = fluid.layers.cast(label, dtype='float32')
|
||||
cost = fluid.layers.log_loss(fc, label_cast)
|
||||
|
||||
strategy = {}
|
||||
strategy["embedding"] = {}
|
||||
strategy["embedding"]["sparse_accessor_class"] = "DownpourUnitAccessor"
|
||||
strategy["embedding"]["embed_sparse_optimizer"] = "naive"
|
||||
try:
|
||||
adam1 = fluid.optimizer.Adam(learning_rate=0.000005)
|
||||
adam1 = fleet.distributed_optimizer(adam1, strategy=strategy)
|
||||
adam1.minimize([cost], [scope])
|
||||
|
||||
strategy["embedding"]["embed_sparse_optimizer"] = "adagrad"
|
||||
adam2 = fluid.optimizer.Adam(learning_rate=0.000005)
|
||||
adam2 = fleet.distributed_optimizer(adam2, strategy=strategy)
|
||||
adam2.minimize([cost], [scope])
|
||||
|
||||
strategy["embedding"]["embed_sparse_optimizer"] = "adam"
|
||||
adam3 = fluid.optimizer.Adam(learning_rate=0.000005)
|
||||
adam3 = fleet.distributed_optimizer(adam3, strategy=strategy)
|
||||
adam3.minimize([cost], [scope])
|
||||
except:
|
||||
print("do not support pslib test, skip")
|
||||
return
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue