Merge pull request #15926 from dzhwinter/test/add_ir_mem_opt_tests
add ir memory optimize test baserevert-15774-anakin_subgraph_engine
commit
15de2dff00
@ -0,0 +1,150 @@
|
|||||||
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
import six
|
||||||
|
import unittest
|
||||||
|
import time
|
||||||
|
import math
|
||||||
|
import multiprocessing
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
import paddle.fluid.core as core
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
from paddle.fluid import compiler
|
||||||
|
|
||||||
|
# open eager delete mode
|
||||||
|
os.environ['FLAGS_eager_delete_tensor_gb'] = '0.0'
|
||||||
|
os.environ['FLAGS_fast_eager_deletion_mode'] = 'true'
|
||||||
|
os.environ['CPU_NUM'] = '2'
|
||||||
|
|
||||||
|
|
||||||
|
class BuildIrMemOptBase(unittest.TestCase):
|
||||||
|
def check_network_convergence(self,
|
||||||
|
network,
|
||||||
|
use_cuda=True,
|
||||||
|
memory_opt=True,
|
||||||
|
use_ir_memory_optimize=True,
|
||||||
|
enable_inplace=True,
|
||||||
|
iter=5):
|
||||||
|
if use_cuda and not core.is_compiled_with_cuda():
|
||||||
|
print('Skip use_cuda=True because Paddle is not compiled with cuda')
|
||||||
|
return
|
||||||
|
|
||||||
|
if os.name == 'nt':
|
||||||
|
print(
|
||||||
|
'Skip use_parallel_executor=True because Paddle comes without parallel support on windows'
|
||||||
|
)
|
||||||
|
return
|
||||||
|
fluid.default_startup_program().random_seed = 100
|
||||||
|
fluid.default_main_program().random_seed = 100
|
||||||
|
batch_size = 32
|
||||||
|
batch_size *= fluid.core.get_cuda_device_count() if use_cuda else int(
|
||||||
|
os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
|
||||||
|
|
||||||
|
# build network
|
||||||
|
word_dict = paddle.dataset.imdb.word_dict()
|
||||||
|
train_reader = paddle.batch(
|
||||||
|
paddle.dataset.imdb.train(word_dict), batch_size=batch_size)
|
||||||
|
|
||||||
|
data = fluid.layers.data(
|
||||||
|
name="words", shape=[1], dtype="int64", lod_level=1)
|
||||||
|
|
||||||
|
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
||||||
|
|
||||||
|
cost = network(data, label, len(word_dict))
|
||||||
|
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
|
||||||
|
optimizer.minimize(cost)
|
||||||
|
if memory_opt:
|
||||||
|
fluid.memory_optimize(fluid.default_main_program())
|
||||||
|
|
||||||
|
# execution
|
||||||
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||||||
|
feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
|
||||||
|
reader = feeder.decorate_reader(train_reader, multi_devices=True)
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
exe.run(fluid.default_startup_program())
|
||||||
|
|
||||||
|
train_cp = compiler.CompiledProgram(fluid.default_main_program())
|
||||||
|
train_cp = train_cp.with_data_parallel(loss_name=cost.name)
|
||||||
|
fetch_list = [cost.name]
|
||||||
|
|
||||||
|
begin = time.time()
|
||||||
|
first_loss, last_loss = None, None
|
||||||
|
step_id = 0
|
||||||
|
custom_iter = getattr(self, "iter", None)
|
||||||
|
if not custom_iter == None:
|
||||||
|
iter = custom_iter
|
||||||
|
for data in reader():
|
||||||
|
ret = exe.run(train_cp, feed=data, fetch_list=fetch_list)
|
||||||
|
print(ret)
|
||||||
|
step_id += 1
|
||||||
|
if step_id == 1:
|
||||||
|
first_loss = ret[0]
|
||||||
|
if step_id == iter:
|
||||||
|
last_loss = ret[0]
|
||||||
|
break
|
||||||
|
end = time.time()
|
||||||
|
|
||||||
|
print("%.4f Instance per second" % (
|
||||||
|
(batch_size * iter) / (end - begin)))
|
||||||
|
|
||||||
|
print(first_loss, last_loss)
|
||||||
|
avg_last_loss_val = np.array(last_loss).mean()
|
||||||
|
avg_first_loss_val = np.array(first_loss).mean()
|
||||||
|
if math.isnan(float(avg_last_loss_val)) or math.isnan(
|
||||||
|
float(avg_first_loss_val)):
|
||||||
|
sys.exit("got NaN loss, training failed.")
|
||||||
|
|
||||||
|
return first_loss, last_loss
|
||||||
|
|
||||||
|
|
||||||
|
class TestIrMemOptBase(BuildIrMemOptBase):
|
||||||
|
def setUp(self):
|
||||||
|
self.network = None
|
||||||
|
|
||||||
|
def test_network(self):
|
||||||
|
if self.network is None or not core.is_compiled_with_cuda():
|
||||||
|
return
|
||||||
|
|
||||||
|
baseline_first_loss, baseline_last_loss = None, None
|
||||||
|
for use_cuda in [True]:
|
||||||
|
for use_python_mem_opt in [True, False]:
|
||||||
|
print(
|
||||||
|
'network: {}, use_cuda: {}, use_python_mem_opt: {}, use_ir_mem_opt : {}'.
|
||||||
|
format(self.network.__name__, use_cuda, use_python_mem_opt,
|
||||||
|
not use_python_mem_opt))
|
||||||
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
||||||
|
with fluid.scope_guard(core.Scope()):
|
||||||
|
if use_cuda is True and use_python_mem_opt is True:
|
||||||
|
baseline_first_loss, baseline_last_loss = self.check_network_convergence(
|
||||||
|
self.network,
|
||||||
|
use_cuda=use_cuda,
|
||||||
|
memory_opt=use_python_mem_opt)
|
||||||
|
else:
|
||||||
|
cur_first_loss, cur_last_loss = self.check_network_convergence(
|
||||||
|
self.network,
|
||||||
|
use_cuda=use_cuda,
|
||||||
|
memory_opt=use_python_mem_opt)
|
||||||
|
|
||||||
|
self.assertAlmostEquals(
|
||||||
|
np.mean(baseline_last_loss),
|
||||||
|
np.mean(cur_last_loss),
|
||||||
|
delta=1e-2)
|
||||||
|
self.assertAlmostEquals(
|
||||||
|
np.mean(baseline_first_loss),
|
||||||
|
np.mean(cur_first_loss),
|
||||||
|
delta=1e-2)
|
@ -0,0 +1,55 @@
|
|||||||
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# nlp model stack of op operate on lod. It's a classical test case in optimize pass.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
import unittest
|
||||||
|
from ir_memory_optimize_net_base import TestIrMemOptBase
|
||||||
|
|
||||||
|
|
||||||
|
def lstm_net(data,
|
||||||
|
label,
|
||||||
|
dict_dim,
|
||||||
|
emb_dim=128,
|
||||||
|
hid_dim=128,
|
||||||
|
hid_dim2=96,
|
||||||
|
class_dim=2,
|
||||||
|
emb_lr=30.0):
|
||||||
|
emb = fluid.layers.embedding(
|
||||||
|
input=data,
|
||||||
|
size=[dict_dim, emb_dim],
|
||||||
|
param_attr=fluid.ParamAttr(learning_rate=emb_lr))
|
||||||
|
fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)
|
||||||
|
|
||||||
|
lstm_h, c = fluid.layers.dynamic_lstm(
|
||||||
|
input=fc0, size=hid_dim * 4, is_reverse=False)
|
||||||
|
lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
|
||||||
|
lstm_max_tanh = fluid.layers.tanh(lstm_max)
|
||||||
|
fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
|
||||||
|
prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
|
||||||
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||||
|
avg_cost = fluid.layers.mean(x=cost)
|
||||||
|
return avg_cost
|
||||||
|
|
||||||
|
|
||||||
|
class TestIrMemOptRNN(TestIrMemOptBase):
|
||||||
|
def setUp(self):
|
||||||
|
self.network = lstm_net
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue