parent
802832119e
commit
1607e87cb9
@ -0,0 +1,62 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
#include <string>
|
||||
#include "paddle/fluid/operators/optimizers/sgd_op.h"
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class MomentumOpXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
T mu = static_cast<T>(ctx.Attr<float>("mu"));
|
||||
bool use_nesterov = ctx.Attr<bool>("use_nesterov");
|
||||
|
||||
auto learning_rate = ctx.Input<framework::Tensor>("LearningRate");
|
||||
auto param = ctx.Input<framework::Tensor>("Param");
|
||||
auto param_out = ctx.Output<framework::Tensor>("ParamOut");
|
||||
auto* velocity = ctx.Input<framework::Tensor>("Velocity");
|
||||
auto velocity_out = ctx.Output<framework::Tensor>("VelocityOut");
|
||||
param_out->mutable_data<T>(ctx.GetPlace());
|
||||
velocity_out->mutable_data<T>(ctx.GetPlace());
|
||||
auto* lr = learning_rate->data<T>();
|
||||
|
||||
auto* grad_var = ctx.InputVar("Grad");
|
||||
PADDLE_ENFORCE_EQ(grad_var->IsType<framework::LoDTensor>(), true,
|
||||
platform::errors::PermissionDenied(
|
||||
"Unsupported Variable Type of Param & Grad in "
|
||||
"MomentumOp-XPU. Excepted "
|
||||
"LodTensor, But received [%s] and [%s]",
|
||||
paddle::framework::ToTypeName(grad_var->Type())));
|
||||
|
||||
auto grad = ctx.Input<framework::Tensor>("Grad");
|
||||
|
||||
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
||||
int r = xpu::momentum(
|
||||
dev_ctx.x_context(), param->data<float>(), velocity->data<float>(),
|
||||
grad->data<float>(), lr, use_nesterov, mu, param_out->numel(),
|
||||
param_out->data<float>(), velocity_out->data<float>());
|
||||
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
||||
platform::errors::PermissionDenied("XPU kernel error!"));
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
momentum,
|
||||
ops::MomentumOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||
#endif
|
@ -0,0 +1,79 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
#include "paddle/fluid/operators/optimizers/sgd_op.h"
|
||||
#include <string>
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SGDOpXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||
const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
|
||||
|
||||
const auto *param_var = ctx.InputVar("Param");
|
||||
const auto *grad_var = ctx.InputVar("Grad");
|
||||
|
||||
if (param_var->IsType<framework::LoDTensor>() &&
|
||||
grad_var->IsType<framework::LoDTensor>()) {
|
||||
const auto *param = ctx.Input<framework::Tensor>("Param");
|
||||
auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
|
||||
// Actually, all tensors are LoDTensor except SelectedRows.
|
||||
const auto *grad = ctx.Input<framework::Tensor>("Grad");
|
||||
auto sz = param_out->numel();
|
||||
PADDLE_ENFORCE_EQ(param->numel(), sz,
|
||||
platform::errors::InvalidArgument(
|
||||
"The input tensor Param's numel of SgdOp "
|
||||
"should be equal with ParamOut's numel. "
|
||||
"But received Param's "
|
||||
"numel = [%s], ParamOut's numel = [%s]",
|
||||
param->numel(), sz));
|
||||
PADDLE_ENFORCE_EQ(grad->numel(), sz,
|
||||
platform::errors::InvalidArgument(
|
||||
"The input tensor Grad's numel of SgdOp "
|
||||
"should be equal with ParamOut's numel. "
|
||||
"But received Grad's "
|
||||
"numel = [%s], ParamOut's numel = [%s]",
|
||||
grad->numel(), sz));
|
||||
|
||||
const T *lr = learning_rate->data<T>();
|
||||
const T *param_data = param->data<T>();
|
||||
const T *grad_data = grad->data<T>();
|
||||
T *out_data = param_out->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto &dev_ctx = ctx.template device_context<DeviceContext>();
|
||||
int r = xpu::sgd(dev_ctx.x_context(), sz, grad_data, param_data, lr,
|
||||
out_data);
|
||||
PADDLE_ENFORCE_EQ(
|
||||
r, xpu::Error_t::SUCCESS,
|
||||
platform::errors::PermissionDenied("XPU kernel error!"));
|
||||
} else {
|
||||
PADDLE_ENFORCE_EQ(false, true,
|
||||
platform::errors::PermissionDenied(
|
||||
"Unsupported Variable Type of Param & Grad in "
|
||||
"SgdOp-XPU. Excepted "
|
||||
"LodTensor, But received [%s] and [%s]",
|
||||
paddle::framework::ToTypeName(param_var->Type())));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
sgd, ops::SGDOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||
#endif
|
@ -0,0 +1,68 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import sys
|
||||
import os
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
from paddle.fluid import core
|
||||
from paddle.fluid.op import Operator
|
||||
|
||||
|
||||
class TestMomentumOp1(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "momentum"
|
||||
self.dtype = np.float32
|
||||
self.init_dtype()
|
||||
|
||||
param = np.random.random((123, 321)).astype(self.dtype)
|
||||
grad = np.random.random((123, 321)).astype(self.dtype)
|
||||
velocity = np.zeros((123, 321)).astype(self.dtype)
|
||||
learning_rate = np.array([0.001]).astype(self.dtype)
|
||||
mu = 0.0001
|
||||
use_nesterov = False
|
||||
|
||||
self.inputs = {
|
||||
'Param': param,
|
||||
'Grad': grad,
|
||||
'Velocity': velocity,
|
||||
'LearningRate': learning_rate
|
||||
}
|
||||
|
||||
self.attrs = {'mu': mu}
|
||||
|
||||
velocity_out = mu * velocity + grad
|
||||
if use_nesterov:
|
||||
param_out = param - grad * learning_rate - \
|
||||
velocity_out * mu * learning_rate
|
||||
else:
|
||||
param_out = param - learning_rate * velocity_out
|
||||
|
||||
self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}
|
||||
|
||||
def init_dtype(self):
|
||||
pass
|
||||
|
||||
def test_check_output_with_place(self):
|
||||
self.check_output_with_place(paddle.XPUPlace(0))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
paddle.enable_static()
|
||||
unittest.main()
|
@ -0,0 +1,75 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import sys
|
||||
import os
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import core
|
||||
from paddle.fluid.op import Operator
|
||||
|
||||
|
||||
class TestSGDOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "sgd"
|
||||
self.conf()
|
||||
w = np.random.random((self.h, self.w)).astype("float32")
|
||||
g = np.random.random((self.h, self.w)).astype("float32")
|
||||
lr = np.array([0.1]).astype("float32")
|
||||
|
||||
self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
|
||||
self.outputs = {'ParamOut': w - lr * g}
|
||||
|
||||
def conf(self):
|
||||
self.h = 102
|
||||
self.w = 105
|
||||
|
||||
def test_check_output_with_place(self):
|
||||
self.check_output_with_place(paddle.XPUPlace(0))
|
||||
|
||||
|
||||
class TestSGDOpCase8X(TestSGDOp):
|
||||
def conf(self):
|
||||
self.h = 10
|
||||
self.w = 64
|
||||
|
||||
|
||||
class TestSGDOpWithLargeInput(unittest.TestCase):
|
||||
def runTest(self):
|
||||
data = fluid.layers.fill_constant(shape=[1], value=128, dtype='int64')
|
||||
label = fluid.layers.fill_constant(
|
||||
shape=[1, 150], value=0.5, dtype='float32')
|
||||
emb = fluid.embedding(input=data, size=(10000, 150), dtype='float32')
|
||||
out = fluid.layers.l2_normalize(x=emb, axis=-1)
|
||||
|
||||
cost = fluid.layers.square_error_cost(input=out, label=label)
|
||||
avg_cost = fluid.layers.mean(cost)
|
||||
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
|
||||
sgd_optimizer.minimize(avg_cost)
|
||||
|
||||
place = paddle.XPUPlace(0)
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(fluid.default_startup_program())
|
||||
result = exe.run(fluid.default_main_program(), fetch_list=[avg_cost])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
paddle.enable_static()
|
||||
unittest.main()
|
Loading…
Reference in new issue