Merge pull request #4956 from QiJune/test_book2
add book02.recognize_digits mlp train testrevert-4814-Add_sequence_project_op
commit
1680903dd4
@ -0,0 +1,83 @@
|
||||
import paddle.v2 as paddle
|
||||
import paddle.v2.framework.layers as layers
|
||||
import paddle.v2.framework.core as core
|
||||
import paddle.v2.framework.optimizer as optimizer
|
||||
|
||||
from paddle.v2.framework.framework import Program, g_program
|
||||
from paddle.v2.framework.executor import Executor
|
||||
|
||||
import numpy as np
|
||||
|
||||
init_program = Program()
|
||||
program = Program()
|
||||
image = layers.data(
|
||||
name='x',
|
||||
shape=[784],
|
||||
data_type='float32',
|
||||
program=program,
|
||||
init_program=init_program)
|
||||
|
||||
hidden1 = layers.fc(input=image,
|
||||
size=128,
|
||||
act='relu',
|
||||
program=program,
|
||||
init_program=init_program)
|
||||
hidden2 = layers.fc(input=hidden1,
|
||||
size=64,
|
||||
act='relu',
|
||||
program=program,
|
||||
init_program=init_program)
|
||||
|
||||
predict = layers.fc(input=hidden2,
|
||||
size=10,
|
||||
act='softmax',
|
||||
program=program,
|
||||
init_program=init_program)
|
||||
|
||||
label = layers.data(
|
||||
name='y',
|
||||
shape=[1],
|
||||
data_type='int32',
|
||||
program=program,
|
||||
init_program=init_program)
|
||||
|
||||
cost = layers.cross_entropy(
|
||||
input=predict, label=label, program=program, init_program=init_program)
|
||||
avg_cost = layers.mean(x=cost, program=program, init_program=init_program)
|
||||
|
||||
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
|
||||
opts = sgd_optimizer.minimize(avg_cost)
|
||||
|
||||
BATCH_SIZE = 128
|
||||
|
||||
train_reader = paddle.batch(
|
||||
paddle.reader.shuffle(
|
||||
paddle.dataset.mnist.train(), buf_size=8192),
|
||||
batch_size=BATCH_SIZE)
|
||||
|
||||
place = core.CPUPlace()
|
||||
exe = Executor(place)
|
||||
|
||||
exe.run(init_program, feed={}, fetch_list=[])
|
||||
|
||||
PASS_NUM = 100
|
||||
for pass_id in range(PASS_NUM):
|
||||
for data in train_reader():
|
||||
x_data = np.array(map(lambda x: x[0], data)).astype("float32")
|
||||
y_data = np.array(map(lambda x: x[1], data)).astype("int32")
|
||||
y_data = np.expand_dims(y_data, axis=1)
|
||||
|
||||
tensor_x = core.LoDTensor()
|
||||
tensor_x.set(x_data, place)
|
||||
|
||||
tensor_y = core.LoDTensor()
|
||||
tensor_y.set(y_data, place)
|
||||
|
||||
outs = exe.run(program,
|
||||
feed={'x': tensor_x,
|
||||
'y': tensor_y},
|
||||
fetch_list=[avg_cost])
|
||||
out = np.array(outs[0])
|
||||
if out[0] < 5.0:
|
||||
exit(0) # if avg cost less than 5.0, we think our code is good.
|
||||
exit(1)
|
Loading…
Reference in new issue