wangkuiyi-patch-1
dzhwinter 7 years ago
parent d516ace94d
commit 16a3d88a20

@ -54,10 +54,19 @@ be linearly scaled to make the L2 norm of $Out$ equal to $max\_norm$, as
shown in the following formula:
$$
Out = \frac{max\_norm * X}{norm(X)},
Out = \\frac{max\\_norm * X}{norm(X)},
$$
where $norm(X)$ represents the L2 norm of $X$.
Examples:
.. code-block:: python
data = fluid.layer.data(
name='data', shape=[2, 4, 6], dtype='float32')
reshaped = fluid.layers.clip_by_norm(
x=data, max_norm=0.5)
)DOC");
}
};

@ -866,6 +866,7 @@ def array_write(x, i, array=None):
Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
Examples:
.. code-block::python
tmp = fluid.layers.zeros(shape=[10], dtype='int32')

@ -3159,8 +3159,6 @@ def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
Examples:
As an example:
.. code-block:: text
Given:
@ -3204,7 +3202,7 @@ def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
output.lod = [[0, 4, 8]]
The simple usage is:
Examples:
.. code-block:: python
@ -3738,7 +3736,7 @@ def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
Output(i, x, y) = Input(i, x, y) / \left(
k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)}
(Input(j, x, y))^2 \right)^{\beta}
(Input(j, x, y))^2\right)^{\beta}
In the above equation:

Loading…
Cancel
Save