|
|
|
@ -1872,7 +1872,7 @@ class BatchNormLayer(LayerBase):
|
|
|
|
|
image_conf = self.config.inputs[0].image_conf
|
|
|
|
|
parse_image(self.inputs[0].image, input_layer.name, image_conf)
|
|
|
|
|
self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
|
|
|
|
|
image_conf.channels)
|
|
|
|
|
image_conf.channels, False)
|
|
|
|
|
|
|
|
|
|
psize = self.calc_parameter_size(image_conf)
|
|
|
|
|
dims = [1, psize]
|
|
|
|
@ -3387,10 +3387,11 @@ def parse_config(config_file, config_arg_str):
|
|
|
|
|
# config = parse_config(configs, "is_predict=1")
|
|
|
|
|
# # then you get config proto object.
|
|
|
|
|
if hasattr(config_file, '__call__'):
|
|
|
|
|
config_file.func_globals.update(make_config_environment("", config_args))
|
|
|
|
|
config_file()
|
|
|
|
|
config_file.func_globals.update(
|
|
|
|
|
make_config_environment("", config_args))
|
|
|
|
|
config_file()
|
|
|
|
|
else:
|
|
|
|
|
execfile(config_file, make_config_environment(config_file, config_args))
|
|
|
|
|
execfile(config_file, make_config_environment(config_file, config_args))
|
|
|
|
|
for k, v in settings.iteritems():
|
|
|
|
|
if v is None:
|
|
|
|
|
continue
|
|
|
|
|