|
|
|
@ -10,15 +10,115 @@ See the License for the specific language governing permissions and
|
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
|
|
#include "paddle/fluid/operators/shuffle_channel_op.h"
|
|
|
|
|
#include "paddle/fluid/platform/cuda_primitives.h"
|
|
|
|
|
#include "paddle/fluid/platform/gpu_info.h"
|
|
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
|
static constexpr int kNumCUDAThreads = 512;
|
|
|
|
|
static constexpr int kNumMaximumNumBlocks = 4096;
|
|
|
|
|
|
|
|
|
|
static inline int NumBlocks(const int N) {
|
|
|
|
|
return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
|
|
|
|
|
kNumMaximumNumBlocks);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
|
|
|
|
|
__global__ void ShuffleChannel(const int nthreads, const int feature_map_size,
|
|
|
|
|
T* output, const T* input, int group_row,
|
|
|
|
|
int group_column, int len) {
|
|
|
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
|
int offset = blockDim.x * gridDim.x;
|
|
|
|
|
for (size_t ii = index; ii < nthreads; ii += offset) {
|
|
|
|
|
const int n = index / group_row / group_column / len;
|
|
|
|
|
const int i = (index / group_column / len) % group_row;
|
|
|
|
|
const int j = index / len % group_column;
|
|
|
|
|
const int k = index - (n * feature_map_size + (i * group_column + j) * len);
|
|
|
|
|
T* p_o = output + n * feature_map_size + (j * group_row + i) * len;
|
|
|
|
|
p_o[k] = input[index];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
template <typename DeviceContext, typename T>
|
|
|
|
|
class ShuffleChannelOpCUDAKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
|
|
|
auto* input = ctx.Input<framework::Tensor>("X");
|
|
|
|
|
auto* output = ctx.Output<framework::Tensor>("Out");
|
|
|
|
|
int group = ctx.Attr<int>("group");
|
|
|
|
|
|
|
|
|
|
auto input_dims = input->dims();
|
|
|
|
|
auto num = input_dims[0];
|
|
|
|
|
auto channel = input_dims[1];
|
|
|
|
|
auto height = input_dims[2];
|
|
|
|
|
auto weight = input_dims[3];
|
|
|
|
|
|
|
|
|
|
auto feature_map_size = channel * height * weight;
|
|
|
|
|
auto sp_sz = height * weight;
|
|
|
|
|
int group_row = group;
|
|
|
|
|
int group_column = channel / group_row;
|
|
|
|
|
// count is the product of NCHW same as numel()
|
|
|
|
|
int count = num * group_column * group_row * sp_sz;
|
|
|
|
|
|
|
|
|
|
int blocks = NumBlocks(output->numel());
|
|
|
|
|
int threads = kNumCUDAThreads;
|
|
|
|
|
|
|
|
|
|
const T* input_data = input->data<T>();
|
|
|
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
|
|
|
|
|
ShuffleChannel<
|
|
|
|
|
T><<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
|
|
|
|
|
count, feature_map_size, output_data, input_data, group_row,
|
|
|
|
|
group_column, sp_sz);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename DeviceContext, typename T>
|
|
|
|
|
class ShuffleChannelGradOpCUDAKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
|
|
|
auto* input = ctx.Input<framework::Tensor>("X");
|
|
|
|
|
int group = ctx.Attr<int>("group");
|
|
|
|
|
auto input_dims = input->dims();
|
|
|
|
|
auto num = input_dims[0];
|
|
|
|
|
auto channel = input_dims[1];
|
|
|
|
|
auto height = input_dims[2];
|
|
|
|
|
auto weight = input_dims[3];
|
|
|
|
|
auto feature_map_size = channel * height * weight;
|
|
|
|
|
auto sp_sz = height * weight;
|
|
|
|
|
|
|
|
|
|
int group_row = group;
|
|
|
|
|
int group_column = channel / group_row;
|
|
|
|
|
auto* output_grad =
|
|
|
|
|
ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
|
|
|
auto* input_grad =
|
|
|
|
|
ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
|
|
|
T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
const T* output_grad_data = output_grad->data<T>();
|
|
|
|
|
|
|
|
|
|
int blocks = NumBlocks(output_grad->numel());
|
|
|
|
|
int threads = kNumCUDAThreads;
|
|
|
|
|
int count = num * group_column * group_row * sp_sz;
|
|
|
|
|
ShuffleChannel<
|
|
|
|
|
T><<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
|
|
|
|
|
count, feature_map_size, input_grad_data, output_grad_data, group_row,
|
|
|
|
|
group_column, sp_sz);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
} // namespace operators
|
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
|
|
|
shufflechannel,
|
|
|
|
|
ops::ShuffleChannelOpKernel<paddle::platform::CUDADeviceContext, float>
|
|
|
|
|
ops::ShuffleChannelOpKernel<paddle::platform::CUDADeviceContext,
|
|
|
|
|
shuffle_channel,
|
|
|
|
|
ops::ShuffleChannelOpCUDAKernel<paddle::platform::CUDADeviceContext, float>,
|
|
|
|
|
ops::ShuffleChannelOpCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
|
|
|
double>);
|
|
|
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
|
|
|
shufflechannel_grad,
|
|
|
|
|
ops::ShuffleChannelOpGradKernel<paddle::platform::CUDADeviceContext, float>
|
|
|
|
|
ops::ShuffleChannelOpGradKernel<paddle::platform::CUDADeviceContext,
|
|
|
|
|
shuffle_channel_grad,
|
|
|
|
|
ops::ShuffleChannelGradOpCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
|
|
|
float>,
|
|
|
|
|
ops::ShuffleChannelGradOpCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
|
|
|
double>);
|
|
|
|
|