Remove unnecessary requirements (#27341)
* remove objgraph * remove graphviz * fix utrevert-27520-disable_pr
parent
11bcf0e21c
commit
189e10f1dd
@ -1,75 +0,0 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import paddle.fluid as fluid
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MLP(fluid.Layer):
|
||||
def __init__(self, input_size):
|
||||
super(MLP, self).__init__()
|
||||
self._linear1 = fluid.dygraph.Linear(
|
||||
input_size,
|
||||
3,
|
||||
param_attr=fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(value=0.1)),
|
||||
bias_attr=fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(value=0.1)))
|
||||
self._linear2 = fluid.dygraph.Linear(
|
||||
3,
|
||||
4,
|
||||
param_attr=fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(value=0.1)),
|
||||
bias_attr=fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(value=0.1)))
|
||||
|
||||
def forward(self, inputs):
|
||||
x = self._linear1(inputs)
|
||||
x = self._linear2(x)
|
||||
x = fluid.layers.reduce_sum(x)
|
||||
return x
|
||||
|
||||
|
||||
class TestDygraphDebugString(unittest.TestCase):
|
||||
def test_dygraph_debug_string(self):
|
||||
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
|
||||
unique_name = 0
|
||||
trace_var = 0
|
||||
alive_var = 0
|
||||
with fluid.dygraph.guard():
|
||||
mlp = MLP(input_size=2)
|
||||
for i in range(10):
|
||||
var_inp = fluid.dygraph.base.to_variable(np_inp)
|
||||
out = mlp(var_inp)
|
||||
out.backward()
|
||||
mlp.clear_gradients()
|
||||
unique_name_tmp, trace_var_tmp, alive_var_tmp = fluid.dygraph.base._print_debug_msg(
|
||||
mlp.parameters(), is_test=True)
|
||||
if i > 0:
|
||||
self.assertGreaterEqual(unique_name, unique_name_tmp)
|
||||
self.assertGreaterEqual(trace_var, trace_var_tmp)
|
||||
self.assertGreaterEqual(alive_var, alive_var_tmp)
|
||||
else:
|
||||
unique_name = unique_name_tmp
|
||||
trace_var = trace_var_tmp
|
||||
alive_var = alive_var_tmp
|
||||
try:
|
||||
fluid.dygraph.base._print_debug_msg(mlp.parameters())
|
||||
except Exception as e:
|
||||
raise RuntimeError(
|
||||
"No Exception is accepted in _print_debug_msg, but we got: {}".
|
||||
format(e))
|
Loading…
Reference in new issue