add regularizer api (#27292)
parent
8fe1c2d1c2
commit
18fc927562
@ -0,0 +1,204 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
from functools import partial
|
||||
import contextlib
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.fluid.core as core
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.framework as framework
|
||||
import paddle.fluid.optimizer as optimizer
|
||||
import paddle.regularizer as regularizer
|
||||
from paddle.fluid.backward import append_backward
|
||||
|
||||
|
||||
def bow_net(data,
|
||||
label,
|
||||
dict_dim,
|
||||
is_sparse=False,
|
||||
emb_dim=8,
|
||||
hid_dim=8,
|
||||
hid_dim2=6,
|
||||
class_dim=2):
|
||||
"""
|
||||
BOW net
|
||||
This model is from https://github.com/PaddlePaddle/models:
|
||||
fluid/PaddleNLP/text_classification/nets.py
|
||||
"""
|
||||
emb = fluid.layers.embedding(
|
||||
input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim])
|
||||
bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
|
||||
bow_tanh = fluid.layers.tanh(bow)
|
||||
fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
|
||||
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
|
||||
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
|
||||
return avg_cost
|
||||
|
||||
|
||||
class TestRegularizer(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.word_dict = paddle.dataset.imdb.word_dict()
|
||||
reader = paddle.batch(
|
||||
paddle.dataset.imdb.train(self.word_dict), batch_size=1)()
|
||||
self.train_data = [next(reader) for _ in range(1)]
|
||||
|
||||
def get_places(self):
|
||||
places = [core.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(core.CUDAPlace(0))
|
||||
return places
|
||||
|
||||
@contextlib.contextmanager
|
||||
def scope_prog_guard(self, main_prog, startup_prog):
|
||||
scope = fluid.core.Scope()
|
||||
with fluid.unique_name.guard():
|
||||
with fluid.scope_guard(scope):
|
||||
with fluid.program_guard(main_prog, startup_prog):
|
||||
yield
|
||||
|
||||
def run_program(self, place, feed_list):
|
||||
exe = fluid.Executor(place)
|
||||
feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
|
||||
exe.run(fluid.default_startup_program())
|
||||
|
||||
main_prog = fluid.default_main_program()
|
||||
param_list = [var.name for var in main_prog.block(0).all_parameters()]
|
||||
|
||||
param_sum = []
|
||||
for data in self.train_data:
|
||||
out = exe.run(main_prog,
|
||||
feed=feeder.feed(data),
|
||||
fetch_list=param_list)
|
||||
p_sum = 0
|
||||
for v in out:
|
||||
p_sum += np.sum(np.abs(v))
|
||||
param_sum.append(p_sum)
|
||||
return param_sum
|
||||
|
||||
def check_l2decay_regularizer(self, place, model):
|
||||
paddle.manual_seed(1)
|
||||
paddle.framework.random._manual_program_seed(1)
|
||||
main_prog = fluid.framework.Program()
|
||||
startup_prog = fluid.framework.Program()
|
||||
with self.scope_prog_guard(
|
||||
main_prog=main_prog, startup_prog=startup_prog):
|
||||
data = fluid.layers.data(
|
||||
name="words", shape=[1], dtype="int64", lod_level=1)
|
||||
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
||||
|
||||
avg_cost = model(data, label, len(self.word_dict))
|
||||
|
||||
optimizer = fluid.optimizer.Adagrad(
|
||||
learning_rate=0.1,
|
||||
regularization=paddle.regularizer.L2Decay(1.0))
|
||||
optimizer.minimize(avg_cost)
|
||||
param_sum = self.run_program(place, [data, label])
|
||||
return param_sum
|
||||
|
||||
def check_l2decay(self, place, model):
|
||||
paddle.manual_seed(1)
|
||||
paddle.framework.random._manual_program_seed(1)
|
||||
main_prog = fluid.framework.Program()
|
||||
startup_prog = fluid.framework.Program()
|
||||
|
||||
with self.scope_prog_guard(
|
||||
main_prog=main_prog, startup_prog=startup_prog):
|
||||
data = fluid.layers.data(
|
||||
name="words", shape=[1], dtype="int64", lod_level=1)
|
||||
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
||||
|
||||
avg_cost_l2 = model(data, label, len(self.word_dict))
|
||||
|
||||
param_list = fluid.default_main_program().block(0).all_parameters()
|
||||
para_sum = []
|
||||
for para in param_list:
|
||||
para_mul = fluid.layers.square(x=para)
|
||||
para_sum.append(fluid.layers.reduce_sum(input=para_mul))
|
||||
avg_cost_l2 += fluid.layers.sums(para_sum) * .5
|
||||
|
||||
optimizer = fluid.optimizer.Adagrad(learning_rate=0.1)
|
||||
optimizer.minimize(avg_cost_l2)
|
||||
param_sum = self.run_program(place, [data, label])
|
||||
return param_sum
|
||||
|
||||
def test_l2(self):
|
||||
for place in self.get_places():
|
||||
dense_sparse_p_sum = []
|
||||
for sparse in [True, False]:
|
||||
model = partial(bow_net, is_sparse=sparse)
|
||||
framework_l2 = self.check_l2decay_regularizer(place, model)
|
||||
l2 = self.check_l2decay(place, model)
|
||||
assert len(l2) == len(framework_l2)
|
||||
for i in range(len(l2)):
|
||||
assert np.isclose(a=framework_l2[i], b=l2[i], rtol=5e-5)
|
||||
dense_sparse_p_sum.append(framework_l2)
|
||||
|
||||
assert len(dense_sparse_p_sum[0]) == len(dense_sparse_p_sum[1])
|
||||
for i in range(len(dense_sparse_p_sum[0])):
|
||||
assert np.isclose(
|
||||
a=dense_sparse_p_sum[0][i],
|
||||
b=dense_sparse_p_sum[1][i],
|
||||
rtol=5e-5)
|
||||
|
||||
def test_repeated_regularization(self):
|
||||
l1 = paddle.regularizer.L1Decay(0.1)
|
||||
l2 = paddle.regularizer.L2Decay(0.01)
|
||||
fc_param_attr = fluid.ParamAttr(regularizer=l1)
|
||||
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
||||
x = fluid.layers.uniform_random([2, 2, 3])
|
||||
out = fluid.layers.fc(x, 5, param_attr=fc_param_attr)
|
||||
loss = fluid.layers.reduce_sum(out)
|
||||
sgd = fluid.optimizer.SGD(learning_rate=0.1, regularization=l2)
|
||||
sgd.minimize(loss)
|
||||
with fluid.dygraph.guard():
|
||||
input = fluid.dygraph.to_variable(
|
||||
np.random.randn(3, 2).astype('float32'))
|
||||
paddle.manual_seed(1)
|
||||
paddle.framework.random._manual_program_seed(1)
|
||||
|
||||
linear1 = fluid.dygraph.Linear(
|
||||
2, 2, param_attr=fc_param_attr, bias_attr=fc_param_attr)
|
||||
linear2 = fluid.dygraph.Linear(
|
||||
2, 2, param_attr=fc_param_attr, bias_attr=fc_param_attr)
|
||||
|
||||
loss1 = linear1(input)
|
||||
loss1.backward()
|
||||
# set l2 regularizer in optimizer, but l1 in fluid.ParamAttr
|
||||
|
||||
fluid.optimizer.SGD(parameter_list=linear1.parameters(),
|
||||
learning_rate=1e-2,
|
||||
regularization=l2).minimize(loss1)
|
||||
# only set l1 in fluid.ParamAttr
|
||||
loss2 = linear2(input)
|
||||
loss2.backward()
|
||||
fluid.optimizer.SGD(parameter_list=linear2.parameters(),
|
||||
learning_rate=1e-2).minimize(loss2)
|
||||
# they should both be applied by l1, and keep the same
|
||||
self.assertTrue(
|
||||
np.allclose(linear1.weight.numpy(), linear2.weight.numpy()),
|
||||
"weight should use the regularization in fluid.ParamAttr!")
|
||||
self.assertTrue(
|
||||
np.allclose(linear1.bias.numpy(), linear2.bias.numpy()),
|
||||
"bias should use the regularization in fluid.ParamAttr!")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue