Merge branch 'develop' of https://github.com/PaddlePaddle/paddle into enhance-include-pool
commit
192c00a7da
@ -0,0 +1,91 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/math/unpooling.h"
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
namespace math {
|
||||
template <typename T>
|
||||
class Unpool2dMaxFunctor<platform::CPUPlace, T> {
|
||||
public:
|
||||
void operator()(const platform::DeviceContext& context,
|
||||
const framework::Tensor& input,
|
||||
const framework::Tensor& indices, framework::Tensor* output) {
|
||||
const int batch_size = input.dims()[0];
|
||||
const int input_height = input.dims()[2];
|
||||
const int input_width = input.dims()[3];
|
||||
const int output_channels = output->dims()[1];
|
||||
const int output_height = output->dims()[2];
|
||||
const int output_width = output->dims()[3];
|
||||
int input_feasize = input_height * input_width;
|
||||
int output_feasize = output_height * output_width;
|
||||
const T* input_data = input.data<T>();
|
||||
const int* indices_data = indices.data<int>();
|
||||
T* output_data = output->mutable_data<T>(context.GetPlace());
|
||||
for (int b = 0; b < batch_size; ++b) {
|
||||
for (int c = 0; c < output_channels; ++c) {
|
||||
for (int i = 0; i < input_feasize; ++i) {
|
||||
int index = indices_data[i];
|
||||
PADDLE_ENFORCE(index < output_feasize, "err index in unpooling!");
|
||||
output_data[index] = input_data[i];
|
||||
}
|
||||
input_data += input_feasize;
|
||||
indices_data += input_feasize;
|
||||
output_data += output_feasize;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
template <class T>
|
||||
class Unpool2dMaxGradFunctor<platform::CPUPlace, T> {
|
||||
public:
|
||||
void operator()(const platform::DeviceContext& context,
|
||||
const framework::Tensor& input,
|
||||
const framework::Tensor& indices,
|
||||
const framework::Tensor& output,
|
||||
const framework::Tensor& output_grad,
|
||||
framework::Tensor* input_grad) {
|
||||
const int batch_size = input.dims()[0];
|
||||
const int input_height = input.dims()[2];
|
||||
const int input_width = input.dims()[3];
|
||||
const int output_channels = output.dims()[1];
|
||||
const int output_height = output.dims()[2];
|
||||
const int output_width = output.dims()[3];
|
||||
int input_feasize = input_height * input_width;
|
||||
int output_feasize = output_height * output_width;
|
||||
const int* indices_data = indices.data<int>();
|
||||
const T* output_grad_data = output_grad.data<T>();
|
||||
T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
|
||||
|
||||
for (int b = 0; b < batch_size; ++b) {
|
||||
for (int c = 0; c < output_channels; ++c) {
|
||||
for (int i = 0; i < input_feasize; ++i) {
|
||||
int index = indices_data[i];
|
||||
PADDLE_ENFORCE(index < output_feasize, "err index in unpooling!");
|
||||
input_grad_data[i] = output_grad_data[index];
|
||||
}
|
||||
input_grad_data += input_feasize;
|
||||
indices_data += input_feasize;
|
||||
output_grad_data += output_feasize;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
template class Unpool2dMaxGradFunctor<platform::CPUPlace, float>;
|
||||
template class Unpool2dMaxGradFunctor<platform::CPUPlace, double>;
|
||||
template class Unpool2dMaxFunctor<platform::CPUPlace, float>;
|
||||
template class Unpool2dMaxFunctor<platform::CPUPlace, double>;
|
||||
} // namespace math
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,134 @@
|
||||
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/math/unpooling.h"
|
||||
#include "paddle/platform/cuda_helper.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
namespace math {
|
||||
template <typename T>
|
||||
__global__ void KernelUnpool2dMax(const int nthreads, const T* input_data,
|
||||
const int* indices_data,
|
||||
const int input_height, const int input_width,
|
||||
const int channels, T* output_data,
|
||||
const int output_height,
|
||||
const int output_width) {
|
||||
int in_n_stride = input_height * input_width * channels;
|
||||
int in_c_stride = input_height * input_width;
|
||||
int out_n_stride = output_height * output_width * channels;
|
||||
int out_c_stride = output_height * output_width;
|
||||
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int offset = blockDim.x * gridDim.x;
|
||||
for (int i = index; i < nthreads; i += offset) {
|
||||
int bidx = i / in_n_stride;
|
||||
int boffset = i % in_n_stride;
|
||||
int cidx = boffset / in_c_stride;
|
||||
int out_offset = bidx * out_n_stride + cidx * out_c_stride;
|
||||
int out_index = indices_data[i];
|
||||
PADDLE_ASSERT(out_index < out_c_stride);
|
||||
output_data[out_offset + out_index] = input_data[i];
|
||||
}
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void KernelUnpool2dMaxGrad(
|
||||
const int nthreads, const T* input_data, const int* indices_data,
|
||||
const int input_height, const int input_width, const int channels,
|
||||
const T* output_data, const T* output_grad, const int output_height,
|
||||
const int output_width, T* input_grad) {
|
||||
int in_n_stride = input_height * input_width * channels;
|
||||
int in_c_stride = input_height * input_width;
|
||||
int out_n_stride = output_height * output_width * channels;
|
||||
int out_c_stride = output_height * output_width;
|
||||
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int offset = blockDim.x * gridDim.x;
|
||||
for (int i = index; i < nthreads; i += offset) {
|
||||
int bidx = i / in_n_stride;
|
||||
int boffset = i % in_n_stride;
|
||||
int cidx = boffset / in_c_stride;
|
||||
int out_offset = bidx * out_n_stride + cidx * out_c_stride;
|
||||
int out_index = indices_data[i];
|
||||
PADDLE_ASSERT(out_index < out_c_stride);
|
||||
input_grad[i] = output_grad[out_offset + out_index];
|
||||
}
|
||||
}
|
||||
/*
|
||||
* All tensors are in NCHW format.
|
||||
*/
|
||||
template <typename T>
|
||||
class Unpool2dMaxFunctor<platform::GPUPlace, T> {
|
||||
public:
|
||||
void operator()(const platform::DeviceContext& context,
|
||||
const framework::Tensor& input,
|
||||
const framework::Tensor& indices, framework::Tensor* output) {
|
||||
const int batch_size = input.dims()[0];
|
||||
const int input_height = input.dims()[2];
|
||||
const int input_width = input.dims()[3];
|
||||
const int output_channels = output->dims()[1];
|
||||
const int output_height = output->dims()[2];
|
||||
const int output_width = output->dims()[3];
|
||||
const T* input_data = input.data<T>();
|
||||
const int* indices_data = indices.data<int>();
|
||||
T* output_data = output->mutable_data<T>(context.GetPlace());
|
||||
int threads = 1024;
|
||||
int grid = (input.numel() + threads - 1) / threads;
|
||||
KernelUnpool2dMax<
|
||||
T><<<grid, threads, 0,
|
||||
reinterpret_cast<const platform::CUDADeviceContext&>(context)
|
||||
.stream()>>>(input.numel(), input_data, indices_data,
|
||||
input_height, input_width, output_channels,
|
||||
output_data, output_height, output_width);
|
||||
}
|
||||
};
|
||||
/*
|
||||
* All tensors are in NCHW format.
|
||||
*/
|
||||
template <typename T>
|
||||
class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
|
||||
public:
|
||||
void operator()(const platform::DeviceContext& context,
|
||||
const framework::Tensor& input,
|
||||
const framework::Tensor& indices,
|
||||
const framework::Tensor& output,
|
||||
const framework::Tensor& output_grad,
|
||||
framework::Tensor* input_grad) {
|
||||
const int batch_size = input.dims()[0];
|
||||
const int input_height = input.dims()[2];
|
||||
const int input_width = input.dims()[3];
|
||||
const int output_channels = output.dims()[1];
|
||||
const int output_height = output.dims()[2];
|
||||
const int output_width = output.dims()[3];
|
||||
const T* input_data = input.data<T>();
|
||||
const int* indices_data = indices.data<int>();
|
||||
const T* output_data = output.data<T>();
|
||||
const T* output_grad_data = output_grad.data<T>();
|
||||
T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
|
||||
int threads = 1024;
|
||||
int grid = (input.numel() + threads - 1) / threads;
|
||||
KernelUnpool2dMaxGrad<
|
||||
T><<<grid, threads, 0,
|
||||
reinterpret_cast<const platform::CUDADeviceContext&>(context)
|
||||
.stream()>>>(input.numel(), input_data, indices_data,
|
||||
input_height, input_width, output_channels,
|
||||
output_data, output_grad_data, output_height,
|
||||
output_width, input_grad_data);
|
||||
}
|
||||
};
|
||||
template class Unpool2dMaxGradFunctor<platform::GPUPlace, float>;
|
||||
template class Unpool2dMaxGradFunctor<platform::GPUPlace, double>;
|
||||
template class Unpool2dMaxFunctor<platform::GPUPlace, float>;
|
||||
template class Unpool2dMaxFunctor<platform::GPUPlace, double>;
|
||||
} // namespace math
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,40 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/tensor.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
namespace math {
|
||||
template <typename Place, typename T>
|
||||
class Unpool2dMaxFunctor {
|
||||
public:
|
||||
void operator()(const platform::DeviceContext& context,
|
||||
const framework::Tensor& input,
|
||||
const framework::Tensor& indices, framework::Tensor* output);
|
||||
};
|
||||
template <typename Place, class T>
|
||||
class Unpool2dMaxGradFunctor {
|
||||
public:
|
||||
void operator()(const platform::DeviceContext& context,
|
||||
const framework::Tensor& input,
|
||||
const framework::Tensor& indices,
|
||||
const framework::Tensor& output,
|
||||
const framework::Tensor& output_grad,
|
||||
framework::Tensor* input_grad);
|
||||
};
|
||||
} // namespace math
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue