Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into feature/tensor_type
commit
194e66f785
@ -0,0 +1,152 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <memory>
|
||||
#include "paddle/fluid/operators/concat_op.h"
|
||||
#include "paddle/fluid/platform/mkldnn_helper.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::DataLayout;
|
||||
using framework::Tensor;
|
||||
using mkldnn::memory;
|
||||
using mkldnn::primitive;
|
||||
using mkldnn::concat;
|
||||
using mkldnn::stream;
|
||||
using platform::to_void_cast;
|
||||
|
||||
static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
|
||||
for (auto* input : inputs) {
|
||||
const bool is_layout_correct = input->layout() == DataLayout::kMKLDNN;
|
||||
const bool is_format_defined =
|
||||
input->format() != memory::format::format_undef;
|
||||
PADDLE_ENFORCE(is_layout_correct && is_format_defined,
|
||||
"Wrong layout/format set for Input tensor");
|
||||
}
|
||||
}
|
||||
|
||||
static memory::primitive_desc CreateMemPrimDesc(const Tensor& input,
|
||||
const mkldnn::engine& engine) {
|
||||
constexpr auto data_type = mkldnn::memory::f32;
|
||||
const auto dims = paddle::framework::vectorize2int(input.dims());
|
||||
const auto format = input.format();
|
||||
auto description = memory::desc(dims, data_type, format);
|
||||
auto mem_prim_desc = memory::primitive_desc(description, engine);
|
||||
return mem_prim_desc;
|
||||
}
|
||||
|
||||
static mkldnn::memory::format GetDstMemFormat(
|
||||
const concat::primitive_desc& concat_pd) {
|
||||
return (memory::format)concat_pd.dst_primitive_desc().desc().data.format;
|
||||
}
|
||||
|
||||
static platform::CPUPlace GetCpuPlace(
|
||||
const paddle::framework::ExecutionContext& ctx) {
|
||||
auto place = ctx.GetPlace();
|
||||
PADDLE_ENFORCE(paddle::platform::is_cpu_place(place),
|
||||
"It must use CPUPlace.");
|
||||
return boost::get<platform::CPUPlace>(place);
|
||||
}
|
||||
|
||||
static const mkldnn::engine& GetMKLDNNEngine(
|
||||
const paddle::framework::ExecutionContext& ctx) {
|
||||
auto& dev_ctx = ctx.template device_context<platform::MKLDNNDeviceContext>();
|
||||
return dev_ctx.GetEngine();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
class ConcatPrimitiveFactory {
|
||||
public:
|
||||
concat::primitive_desc CreateConcatPrimDescriptor(
|
||||
const std::vector<const Tensor*> multi_input, Tensor* output,
|
||||
int concat_axis, const mkldnn::engine& mkldnn_engine) {
|
||||
CreateSourcesDescriptors(multi_input, mkldnn_engine);
|
||||
auto dst_desc = CreateDstMemDescriptor(output);
|
||||
return concat::primitive_desc(dst_desc, concat_axis, srcs_pd);
|
||||
}
|
||||
|
||||
concat CreateConcatPrimitive(const concat::primitive_desc& concat_pd,
|
||||
Tensor* output, platform::CPUPlace place) {
|
||||
CreateSourcePrimitiveAts();
|
||||
dst_mem = CreateDstMemory(concat_pd, output, place);
|
||||
return concat(concat_pd, inputs, dst_mem.get());
|
||||
}
|
||||
|
||||
private:
|
||||
memory::desc CreateDstMemDescriptor(Tensor* output) {
|
||||
auto dst_dims = paddle::framework::vectorize2int(output->dims());
|
||||
return memory::desc(dst_dims, platform::MKLDNNGetDataType<T>(),
|
||||
memory::format::any);
|
||||
}
|
||||
|
||||
mkldnn::memory CreateDstMemory(const concat::primitive_desc& concat_pd,
|
||||
Tensor* output, platform::CPUPlace place) {
|
||||
return memory(concat_pd.dst_primitive_desc(),
|
||||
output->mutable_data<T>(place));
|
||||
}
|
||||
|
||||
void CreateSourcesDescriptors(const std::vector<const Tensor*> multi_input,
|
||||
const mkldnn::engine& mkldnn_engine) {
|
||||
for (size_t i = 0; i < multi_input.size(); i++) {
|
||||
auto mem_prim_desc = CreateMemPrimDesc(*multi_input[i], mkldnn_engine);
|
||||
srcs_pd.push_back(mem_prim_desc);
|
||||
srcs.push_back(
|
||||
memory(mem_prim_desc, to_void_cast(multi_input[i]->data<T>())));
|
||||
}
|
||||
}
|
||||
|
||||
void CreateSourcePrimitiveAts() {
|
||||
inputs.reserve(srcs.size());
|
||||
for (size_t i = 0; i < srcs.size(); i++) {
|
||||
inputs.push_back(srcs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<memory::primitive_desc> srcs_pd;
|
||||
std::vector<memory> srcs;
|
||||
std::vector<primitive::at> inputs;
|
||||
boost::optional<memory> dst_mem; // TODO(mgallus): change to std::optional
|
||||
}; // upon introduction of C++17 to paddle
|
||||
|
||||
template <typename T>
|
||||
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
||||
auto place = GetCpuPlace(ctx);
|
||||
const auto& mkldnn_engine = GetMKLDNNEngine(ctx);
|
||||
|
||||
auto multi_input = ctx.MultiInput<Tensor>("X");
|
||||
EnforceLayouts(multi_input);
|
||||
Tensor* output = ctx.Output<Tensor>("Out");
|
||||
int64_t concat_axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
|
||||
|
||||
ConcatPrimitiveFactory<T> prim_creator;
|
||||
auto concat_pd = prim_creator.CreateConcatPrimDescriptor(
|
||||
multi_input, output, static_cast<int>(concat_axis), mkldnn_engine);
|
||||
auto concat = prim_creator.CreateConcatPrimitive(concat_pd, output, place);
|
||||
stream(stream::kind::eager).submit({concat}).wait();
|
||||
|
||||
output->set_layout(DataLayout::kMKLDNN);
|
||||
output->set_format(GetDstMemFormat(concat_pd));
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
|
||||
ops::ConcatMKLDNNOpKernel<float>)
|
@ -0,0 +1,61 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
from test_concat_op import TestConcatOp, TestConcatOp2, TestConcatOp3
|
||||
|
||||
|
||||
class TestMKLDNNConcatOp(TestConcatOp):
|
||||
def setUp(self):
|
||||
super(TestMKLDNNConcatOp, self).setUp()
|
||||
self.attrs["use_mkldnn"] = True
|
||||
self._cpu_only = True
|
||||
|
||||
def test_check_grad(self):
|
||||
pass
|
||||
|
||||
def init_kernel_type(self):
|
||||
self.use_mkldnn = True
|
||||
|
||||
|
||||
class TestMKLDNNConcatOp2(TestConcatOp2):
|
||||
def setUp(self):
|
||||
super(TestMKLDNNConcatOp2, self).setUp()
|
||||
self.attrs["use_mkldnn"] = True
|
||||
self._cpu_only = True
|
||||
|
||||
def test_check_grad(self):
|
||||
pass
|
||||
|
||||
def init_kernel_type(self):
|
||||
self.use_mkldnn = True
|
||||
|
||||
|
||||
class TestMKLDNNConcatOp3(TestConcatOp3):
|
||||
def setUp(self):
|
||||
super(TestMKLDNNConcatOp3, self).setUp()
|
||||
self.attrs["use_mkldnn"] = True
|
||||
self._cpu_only = True
|
||||
|
||||
def test_check_grad(self):
|
||||
pass
|
||||
|
||||
def init_kernel_type(self):
|
||||
self.use_mkldnn = True
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue