Add Lookahead and ModelAverage Optimizer (#30004)
* test=develop, add model_average and lookaheadrevert-31562-mean
parent
6a19e41f1f
commit
198fbdfb60
@ -0,0 +1,146 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
from paddle.fluid import core
|
||||
from paddle.fluid.op import Operator
|
||||
import paddle.fluid as fluid
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
LOOKAHEAD_K = 5
|
||||
LOOKAHEAD_ALPHA = 0.2
|
||||
SGD_LR = 1.0
|
||||
|
||||
|
||||
class TestLookAhead(unittest.TestCase):
|
||||
def test_lookahead_static(self):
|
||||
paddle.enable_static()
|
||||
place = fluid.CPUPlace()
|
||||
shape = [2, 3, 8, 8]
|
||||
exe = fluid.Executor(place)
|
||||
train_program = fluid.Program()
|
||||
startup = fluid.Program()
|
||||
with fluid.program_guard(train_program, startup):
|
||||
with fluid.unique_name.guard():
|
||||
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
|
||||
hidden = fluid.layers.fc(input=data, size=10)
|
||||
loss = fluid.layers.mean(hidden)
|
||||
|
||||
optimizer = paddle.optimizer.SGD(learning_rate=SGD_LR)
|
||||
lookahead = paddle.incubate.optimizer.LookAhead(
|
||||
optimizer, alpha=LOOKAHEAD_ALPHA, k=LOOKAHEAD_K)
|
||||
lookahead.minimize(loss)
|
||||
|
||||
exe.run(startup)
|
||||
slow_param = None
|
||||
fast_param = None
|
||||
for i in range(10):
|
||||
if (i + 1) % LOOKAHEAD_K == 0:
|
||||
slow_param = slow_param + LOOKAHEAD_ALPHA * (fast_param -
|
||||
slow_param)
|
||||
x = np.random.random(size=(10, 1)).astype('float32')
|
||||
latest_b, b_grad = exe.run(program=train_program,
|
||||
feed={'X': x},
|
||||
fetch_list=[
|
||||
'fc_0.b_0',
|
||||
'fc_0.b_0@GRAD',
|
||||
])
|
||||
if i == 0:
|
||||
slow_param = latest_b
|
||||
if (i + 1) % LOOKAHEAD_K == 0:
|
||||
self.assertAlmostEqual(
|
||||
slow_param.all(), latest_b.all(), delta=5e-3)
|
||||
fast_param = latest_b - SGD_LR * b_grad
|
||||
|
||||
def test_look_ahead_dygraph(self):
|
||||
BATCH_SIZE = 16
|
||||
BATCH_NUM = 4
|
||||
EPOCH_NUM = 4
|
||||
|
||||
IMAGE_SIZE = 784
|
||||
CLASS_NUM = 10
|
||||
|
||||
# define a random dataset
|
||||
class RandomDataset(paddle.io.Dataset):
|
||||
def __init__(self, num_samples):
|
||||
self.num_samples = num_samples
|
||||
|
||||
def __getitem__(self, idx):
|
||||
image = np.random.random([IMAGE_SIZE]).astype('float32')
|
||||
label = np.random.randint(0, CLASS_NUM - 1,
|
||||
(1, )).astype('int64')
|
||||
return image, label
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
class LinearNet(nn.Layer):
|
||||
def __init__(self):
|
||||
super(LinearNet, self).__init__()
|
||||
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
|
||||
self.bias = self._linear.bias
|
||||
|
||||
@paddle.jit.to_static
|
||||
def forward(self, x):
|
||||
return self._linear(x)
|
||||
|
||||
def train(layer, loader, loss_fn, opt):
|
||||
idx = 0
|
||||
slow_param = None
|
||||
fast_param = None
|
||||
for epoch_id in range(EPOCH_NUM):
|
||||
for batch_id, (image, label) in enumerate(loader()):
|
||||
idx += 1
|
||||
out = layer(image)
|
||||
loss = loss_fn(out, label)
|
||||
loss.backward()
|
||||
fast_param = layer.bias.numpy() - SGD_LR * layer.bias.grad
|
||||
opt.step()
|
||||
if idx == 1:
|
||||
slow_param = fast_param
|
||||
if idx % LOOKAHEAD_K == 0:
|
||||
slow_param = slow_param + LOOKAHEAD_ALPHA * (
|
||||
fast_param - slow_param)
|
||||
self.assertAlmostEqual(
|
||||
np.mean(slow_param),
|
||||
np.mean(layer.bias.numpy()),
|
||||
delta=5e-3)
|
||||
opt.clear_grad()
|
||||
|
||||
layer = LinearNet()
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
optimizer = paddle.optimizer.SGD(learning_rate=SGD_LR,
|
||||
parameters=layer.parameters())
|
||||
lookahead = paddle.incubate.optimizer.LookAhead(
|
||||
optimizer, alpha=LOOKAHEAD_ALPHA, k=LOOKAHEAD_K)
|
||||
|
||||
# create data loader
|
||||
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
|
||||
loader = paddle.io.DataLoader(
|
||||
dataset,
|
||||
batch_size=BATCH_SIZE,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
num_workers=2)
|
||||
|
||||
train(layer, loader, loss_fn, lookahead)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,209 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
from paddle.fluid import core
|
||||
from paddle.fluid.op import Operator
|
||||
import paddle.fluid as fluid
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
|
||||
class TestModelAverage(unittest.TestCase):
|
||||
def test_model_average_static(self):
|
||||
paddle.enable_static()
|
||||
place = fluid.CPUPlace()
|
||||
shape = [2, 3, 8, 8]
|
||||
exe = fluid.Executor(place)
|
||||
train_program = fluid.Program()
|
||||
startup = fluid.Program()
|
||||
test_program = fluid.Program()
|
||||
with fluid.program_guard(train_program, startup):
|
||||
with fluid.unique_name.guard():
|
||||
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
|
||||
hidden = fluid.layers.fc(input=data, size=10)
|
||||
loss = fluid.layers.mean(hidden)
|
||||
test_program = train_program.clone()
|
||||
optimizer = paddle.optimizer.Momentum(
|
||||
learning_rate=0.2, momentum=0.1)
|
||||
|
||||
optimizer.minimize(loss)
|
||||
# build ModelAverage optimizer
|
||||
model_average = paddle.incubate.optimizer.ModelAverage(
|
||||
0.15, min_average_window=2, max_average_window=10)
|
||||
|
||||
exe.run(startup)
|
||||
for i in range(10):
|
||||
x = np.random.random(size=(10, 1)).astype('float32')
|
||||
latest_b, sum_1, sum_2, sum_3, num_accumulates, old_num_accumulates, num_updates = exe.run(
|
||||
program=train_program,
|
||||
feed={'X': x},
|
||||
fetch_list=[
|
||||
'fc_0.b_0', 'fc_0.b_0_sum_1_0', 'fc_0.b_0_sum_2_0',
|
||||
'fc_0.b_0_sum_3_0', 'fc_0.b_0_num_accumulates_0',
|
||||
'fc_0.b_0_old_num_accumulates_0', 'fc_0.b_0_num_updates_0'
|
||||
])
|
||||
self.assertTrue(
|
||||
np.equal(
|
||||
sum_1, np.zeros(
|
||||
shape=[10], dtype='float32')).all())
|
||||
self.assertTrue(
|
||||
np.equal(
|
||||
sum_2, np.zeros(
|
||||
shape=[10], dtype='float32')).all())
|
||||
self.assertTrue(
|
||||
np.equal(
|
||||
num_accumulates, np.array(
|
||||
[0], dtype='int64')).all())
|
||||
self.assertTrue(
|
||||
np.equal(
|
||||
old_num_accumulates, np.array(
|
||||
[2], dtype='int64')).all())
|
||||
self.assertTrue(
|
||||
np.equal(
|
||||
num_updates, np.array(
|
||||
[10], dtype='int64')).all())
|
||||
|
||||
average_b = (sum_1 + sum_2 + sum_3) / (
|
||||
num_accumulates + old_num_accumulates)
|
||||
# apply ModelAverage
|
||||
with model_average.apply(exe):
|
||||
x = np.random.random(size=(10, 1)).astype('float32')
|
||||
outs, b = exe.run(program=test_program,
|
||||
feed={'X': x},
|
||||
fetch_list=[loss.name, 'fc_0.b_0'])
|
||||
self.assertAlmostEqual(np.mean(average_b), np.mean(b))
|
||||
|
||||
x = np.random.random(size=(10, 1)).astype('float32')
|
||||
outs, b = exe.run(program=test_program,
|
||||
feed={'X': x},
|
||||
fetch_list=[loss.name, 'fc_0.b_0'])
|
||||
self.assertAlmostEqual(np.mean(latest_b), np.mean(b))
|
||||
|
||||
def test_model_average_dygraph(self):
|
||||
BATCH_SIZE = 16
|
||||
BATCH_NUM = 4
|
||||
EPOCH_NUM = 4
|
||||
|
||||
IMAGE_SIZE = 784
|
||||
CLASS_NUM = 10
|
||||
|
||||
# define a random dataset
|
||||
class RandomDataset(paddle.io.Dataset):
|
||||
def __init__(self, num_samples):
|
||||
self.num_samples = num_samples
|
||||
|
||||
def __getitem__(self, idx):
|
||||
image = np.random.random([IMAGE_SIZE]).astype('float32')
|
||||
label = np.random.randint(0, CLASS_NUM - 1,
|
||||
(1, )).astype('int64')
|
||||
return image, label
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
class LinearNet(nn.Layer):
|
||||
def __init__(self):
|
||||
super(LinearNet, self).__init__()
|
||||
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
|
||||
self.bias = self._linear.bias
|
||||
|
||||
@paddle.jit.to_static
|
||||
def forward(self, x):
|
||||
return self._linear(x)
|
||||
|
||||
def train(layer, loader, loss_fn, opt, model_average):
|
||||
for epoch_id in range(EPOCH_NUM):
|
||||
for batch_id, (image, label) in enumerate(loader()):
|
||||
out = layer(image)
|
||||
loss = loss_fn(out, label)
|
||||
loss.backward()
|
||||
opt.step()
|
||||
model_average.step()
|
||||
opt.clear_grad()
|
||||
model_average.clear_grad()
|
||||
# print("Train Epoch {} batch {}: loss = {}, bias = {}".format(
|
||||
# epoch_id, batch_id, np.mean(loss.numpy()), layer.bias.numpy()))
|
||||
sum_1 = model_average._get_accumulator('sum_1', layer.bias)
|
||||
sum_2 = model_average._get_accumulator('sum_2', layer.bias)
|
||||
sum_3 = model_average._get_accumulator('sum_3', layer.bias)
|
||||
num_accumulates = model_average._get_accumulator('num_accumulates',
|
||||
layer.bias)
|
||||
old_num_accumulates = model_average._get_accumulator(
|
||||
'old_num_accumulates', layer.bias)
|
||||
num_updates = model_average._get_accumulator('num_updates',
|
||||
layer.bias)
|
||||
|
||||
return ((sum_1 + sum_2 + sum_3) /
|
||||
(num_accumulates + old_num_accumulates)).numpy()
|
||||
|
||||
def evaluate(layer, loader, loss_fn, check_param):
|
||||
for batch_id, (image, label) in enumerate(loader()):
|
||||
out = layer(image)
|
||||
loss = loss_fn(out, label)
|
||||
loss.backward()
|
||||
self.assertAlmostEqual(
|
||||
np.mean(layer.bias.numpy()),
|
||||
np.mean(check_param),
|
||||
delta=5e-3)
|
||||
# print("Evaluate batch {}: loss = {}, bias = {}".format(
|
||||
# batch_id, np.mean(loss.numpy()), layer.bias.numpy()))
|
||||
|
||||
# create network
|
||||
|
||||
layer = LinearNet()
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
optimizer = paddle.optimizer.Momentum(
|
||||
learning_rate=0.2, momentum=0.1, parameters=layer.parameters())
|
||||
# build ModelAverage optimizer
|
||||
model_average = paddle.incubate.optimizer.ModelAverage(
|
||||
0.15,
|
||||
parameters=layer.parameters(),
|
||||
min_average_window=2,
|
||||
max_average_window=10)
|
||||
|
||||
# create data loader
|
||||
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
|
||||
loader = paddle.io.DataLoader(
|
||||
dataset,
|
||||
batch_size=BATCH_SIZE,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
num_workers=2)
|
||||
eval_loader = paddle.io.DataLoader(
|
||||
dataset,
|
||||
batch_size=BATCH_SIZE,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
num_workers=1)
|
||||
# train
|
||||
check_param = train(layer, loader, loss_fn, optimizer, model_average)
|
||||
# print(check_param)
|
||||
with model_average.apply(need_restore=False):
|
||||
evaluate(layer, eval_loader, loss_fn, check_param)
|
||||
|
||||
check_param = (model_average._get_accumulator('restore',
|
||||
layer.bias)).numpy()
|
||||
# print(check_param)
|
||||
# print("\nEvaluate With Restored Paramters")
|
||||
model_average.restore()
|
||||
evaluate(layer, eval_loader, loss_fn, check_param)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,18 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .lookahead import LookAhead
|
||||
from .modelaverage import ModelAverage
|
||||
|
||||
__all__ = ['LookAhead', 'ModelAverage']
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue