|
|
|
@ -6,6 +6,7 @@ height = 227
|
|
|
|
|
width = 227
|
|
|
|
|
num_class = 1000
|
|
|
|
|
batch_size = get_config_arg('batch_size', int, 128)
|
|
|
|
|
use_mkldnn = get_config_arg('use_mkldnn', bool, False)
|
|
|
|
|
|
|
|
|
|
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
|
|
|
|
|
define_py_data_sources2(
|
|
|
|
@ -31,7 +32,12 @@ net = img_pool_layer(input=net, pool_size=3, stride=2)
|
|
|
|
|
|
|
|
|
|
# conv2
|
|
|
|
|
net = img_conv_layer(
|
|
|
|
|
input=net, filter_size=5, num_filters=256, stride=1, padding=2, groups=1)
|
|
|
|
|
input=net,
|
|
|
|
|
filter_size=5,
|
|
|
|
|
num_filters=256,
|
|
|
|
|
stride=1,
|
|
|
|
|
padding=2,
|
|
|
|
|
groups=2 if use_mkldnn else 1)
|
|
|
|
|
net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75)
|
|
|
|
|
net = img_pool_layer(input=net, pool_size=3, stride=2)
|
|
|
|
|
|
|
|
|
@ -40,11 +46,21 @@ net = img_conv_layer(
|
|
|
|
|
input=net, filter_size=3, num_filters=384, stride=1, padding=1)
|
|
|
|
|
# conv4
|
|
|
|
|
net = img_conv_layer(
|
|
|
|
|
input=net, filter_size=3, num_filters=384, stride=1, padding=1, groups=1)
|
|
|
|
|
input=net,
|
|
|
|
|
filter_size=3,
|
|
|
|
|
num_filters=384,
|
|
|
|
|
stride=1,
|
|
|
|
|
padding=1,
|
|
|
|
|
groups=2 if use_mkldnn else 1)
|
|
|
|
|
|
|
|
|
|
# conv5
|
|
|
|
|
net = img_conv_layer(
|
|
|
|
|
input=net, filter_size=3, num_filters=256, stride=1, padding=1, groups=1)
|
|
|
|
|
input=net,
|
|
|
|
|
filter_size=3,
|
|
|
|
|
num_filters=256,
|
|
|
|
|
stride=1,
|
|
|
|
|
padding=1,
|
|
|
|
|
groups=2 if use_mkldnn else 1)
|
|
|
|
|
net = img_pool_layer(input=net, pool_size=3, stride=2)
|
|
|
|
|
|
|
|
|
|
net = fc_layer(
|
|
|
|
|