|
|
|
@ -112,58 +112,52 @@ class GradientClipByNorm(BaseGradientClipAttr):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GradientClipByGlobalNorm(BaseGradientClipAttr):
|
|
|
|
|
global_norm_var = None
|
|
|
|
|
local_norm_var = None
|
|
|
|
|
clip_norm_var = None
|
|
|
|
|
scale_var = None
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def init(cls, clip_norm):
|
|
|
|
|
if not (isinstance(clip_norm, int) or isinstance(clip_norm, float)):
|
|
|
|
|
raise TypeError("The 'clip_norm' must be a value of int or float")
|
|
|
|
|
|
|
|
|
|
cls.global_norm_var = layers.fill_constant(
|
|
|
|
|
shape=[1], dtype="float32", value=0.0)
|
|
|
|
|
cls.local_norm_var = layers.create_tensor(dtype="float32")
|
|
|
|
|
cls.clip_norm_var = layers.fill_constant(
|
|
|
|
|
shape=[1], dtype="float32", value=clip_norm)
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def check_init(cls):
|
|
|
|
|
if not (isinstance(cls.global_norm_var, framework.Variable) and
|
|
|
|
|
isinstance(cls.local_norm_var, framework.Variable) and
|
|
|
|
|
isinstance(cls.clip_norm_var, framework.Variable)):
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"Class 'GradientClipByGlobalNorm' has not been properly initialized. \
|
|
|
|
|
Please call GradientClipByGlobalNorm.init() first.")
|
|
|
|
|
def __init__(self, clip_norm, group_name="default_group"):
|
|
|
|
|
if not isinstance(group_name, basestring):
|
|
|
|
|
raise TypeError("'group_name' must be a basestring.")
|
|
|
|
|
|
|
|
|
|
self.clip_norm = clip_norm
|
|
|
|
|
self.group_name = group_name
|
|
|
|
|
|
|
|
|
|
def process_context(self, context, param, grad):
|
|
|
|
|
cls = self.__class__
|
|
|
|
|
cls.check_init()
|
|
|
|
|
if self.group_name not in context:
|
|
|
|
|
context[self.group_name] = []
|
|
|
|
|
context[self.group_name + "_clip_value"] = self.clip_norm
|
|
|
|
|
context[self.group_name + "_clip"] = layers.fill_constant(
|
|
|
|
|
shape=[1], dtype="float32", value=self.clip_norm)
|
|
|
|
|
else:
|
|
|
|
|
if not self.clip_norm == context[self.group_name + "_clip_value"]:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"All parameters' 'clip_norm' of a same group should be the same"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
cls.local_norm_var = layers.reduce_sum(
|
|
|
|
|
input=layers.pow(x=grad, factor=2.0))
|
|
|
|
|
layers.sums(
|
|
|
|
|
input=[cls.local_norm_var, cls.global_norm_var],
|
|
|
|
|
out=[cls.global_norm_var])
|
|
|
|
|
local_norm_var = layers.reduce_sum(input=layers.pow(x=grad, factor=2.0))
|
|
|
|
|
context[self.group_name].append(local_norm_var)
|
|
|
|
|
|
|
|
|
|
def create_operators(self, param, grad):
|
|
|
|
|
cls = self.__class__
|
|
|
|
|
cls.check_init()
|
|
|
|
|
self.context = context
|
|
|
|
|
|
|
|
|
|
if cls.scale_var is None:
|
|
|
|
|
layers.sqrt(x=cls.global_norm_var, out=cls.global_norm_var)
|
|
|
|
|
cls.scale_var = layers.elementwise_div(
|
|
|
|
|
x=cls.clip_norm_var,
|
|
|
|
|
def create_operators(self, param, grad):
|
|
|
|
|
group_scale_name = self.group_name + "_scale"
|
|
|
|
|
if group_scale_name not in self.context:
|
|
|
|
|
group_norm_var = layers.sums(input=self.context[self.group_name])
|
|
|
|
|
layers.sqrt(x=group_norm_var, out=group_norm_var)
|
|
|
|
|
clip_var = self.context[self.group_name + "_clip"]
|
|
|
|
|
group_scale_var = layers.elementwise_div(
|
|
|
|
|
x=clip_var,
|
|
|
|
|
y=layers.elementwise_max(
|
|
|
|
|
x=cls.clip_norm_var, y=cls.global_norm_var))
|
|
|
|
|
assert cls.scale_var.shape == (1L, )
|
|
|
|
|
x=clip_var, y=group_norm_var))
|
|
|
|
|
assert group_scale_var.shape == (1L, )
|
|
|
|
|
self.context[group_scale_name] = group_scale_var
|
|
|
|
|
|
|
|
|
|
new_grad = layers.elementwise_mul(x=grad, y=cls.scale_var)
|
|
|
|
|
new_grad = layers.elementwise_mul(
|
|
|
|
|
x=grad, y=self.context[group_scale_name])
|
|
|
|
|
return param, new_grad
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def gradient_clip_by_global_norm(clip_norm, param_list=None, program=None):
|
|
|
|
|
def gradient_clip_by_global_norm(clip_norm,
|
|
|
|
|
param_list=None,
|
|
|
|
|
group_name="default_group",
|
|
|
|
|
program=None):
|
|
|
|
|
if program is None:
|
|
|
|
|
program = framework.default_main_program()
|
|
|
|
|
if param_list is None:
|
|
|
|
@ -175,9 +169,9 @@ def gradient_clip_by_global_norm(clip_norm, param_list=None, program=None):
|
|
|
|
|
"'param_list' should be a list of Parameter or basestring(parameter's name)."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
GradientClipByGlobalNorm.init(clip_norm)
|
|
|
|
|
for param in param_list:
|
|
|
|
|
param.gradient_clip_attr = GradientClipByGlobalNorm()
|
|
|
|
|
param.gradient_clip_attr = GradientClipByGlobalNorm(clip_norm,
|
|
|
|
|
group_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def append_gradient_clip_ops(param_grad):
|
|
|
|
|