Add vision api for hapi (#24404)

* add vision

* fix predict, test=develop

* add unittest for vision apis, test=develop

* fix typos

* add hapi models api, test=develop

* fix code format, test=develop

* fix typos, test=develop

* fix sample code import, test=develop

* fix sample codes, test=develop

* add decompress, test=develop

* rm darknet, test=develop

* rm debug code, test=develop
release/2.0-alpha
LielinJiang 6 years ago committed by GitHub
parent 046b7ebc03
commit 1a0d26a4db
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -22,6 +22,8 @@ import os.path as osp
import shutil
import requests
import hashlib
import tarfile
import zipfile
import time
from collections import OrderedDict
from paddle.fluid.dygraph.parallel import ParallelEnv
@ -166,6 +168,11 @@ def get_path_from_url(url, root_dir, md5sum=None, check_exist=True):
else:
while not os.path.exists(fullpath):
time.sleep(1)
if ParallelEnv().local_rank == 0:
if tarfile.is_tarfile(fullpath) or zipfile.is_zipfile(fullpath):
fullpath = _decompress(fullpath)
return fullpath
@ -233,3 +240,101 @@ def _md5check(fullname, md5sum=None):
"{}(base)".format(fullname, calc_md5sum, md5sum))
return False
return True
def _decompress(fname):
"""
Decompress for zip and tar file
"""
logger.info("Decompressing {}...".format(fname))
# For protecting decompressing interupted,
# decompress to fpath_tmp directory firstly, if decompress
# successed, move decompress files to fpath and delete
# fpath_tmp and remove download compress file.
if tarfile.is_tarfile(fname):
uncompressed_path = _uncompress_file_tar(fname)
elif zipfile.is_zipfile(fname):
uncompressed_path = _uncompress_file_zip(fname)
else:
raise TypeError("Unsupport compress file type {}".format(fname))
return uncompressed_path
def _uncompress_file_zip(filepath):
files = zipfile.ZipFile(filepath, 'r')
file_list = files.namelist()
file_dir = os.path.dirname(filepath)
if _is_a_single_file(file_list):
rootpath = file_list[0]
uncompressed_path = os.path.join(file_dir, rootpath)
for item in file_list:
files.extract(item, file_dir)
elif _is_a_single_dir(file_list):
rootpath = os.path.splitext(file_list[0])[0].split(os.sep)[-1]
uncompressed_path = os.path.join(file_dir, rootpath)
for item in file_list:
files.extract(item, file_dir)
else:
rootpath = os.path.splitext(filepath)[0].split(os.sep)[-1]
uncompressed_path = os.path.join(file_dir, rootpath)
if not os.path.exists(uncompressed_path):
os.makedirs(uncompressed_path)
for item in file_list:
files.extract(item, os.path.join(file_dir, rootpath))
files.close()
return uncompressed_path
def _uncompress_file_tar(filepath, mode="r:*"):
files = tarfile.open(filepath, mode)
file_list = files.getnames()
file_dir = os.path.dirname(filepath)
if _is_a_single_file(file_list):
rootpath = file_list[0]
uncompressed_path = os.path.join(file_dir, rootpath)
for item in file_list:
files.extract(item, file_dir)
elif _is_a_single_dir(file_list):
rootpath = os.path.splitext(file_list[0])[0].split(os.sep)[-1]
uncompressed_path = os.path.join(file_dir, rootpath)
for item in file_list:
files.extract(item, file_dir)
else:
rootpath = os.path.splitext(filepath)[0].split(os.sep)[-1]
uncompressed_path = os.path.join(file_dir, rootpath)
if not os.path.exists(uncompressed_path):
os.makedirs(uncompressed_path)
for item in file_list:
files.extract(item, os.path.join(file_dir, rootpath))
files.close()
return uncompressed_path
def _is_a_single_file(file_list):
if len(file_list) == 1 and file_list[0].find(os.sep) < -1:
return True
return False
def _is_a_single_dir(file_list):
file_name = file_list[0].split(os.sep)[0]
for i in range(1, len(file_list)):
if file_name != file_list[i].split(os.sep)[0]:
return False
return True

@ -42,7 +42,7 @@ class Metric(object):
m.accumulate()
Advanced usage for :code:`add_metric_op`
Metric calculating con be accelerate by calucateing metric states
Metric calculation can be accelerated by calculating metric states
from model outputs and labels by Paddle OPs in :code:`add_metric_op`,
metric states will be fetch as numpy array and call :code:`update`
with states in numpy format.

@ -1633,7 +1633,12 @@ class Model(fluid.dygraph.Layer):
for k, v in zip(self._metrics_name(), metrics):
logs[k] = v
else:
outs = getattr(self, mode + '_batch')(data)
if self._inputs is not None:
outs = getattr(self,
mode + '_batch')(data[:len(self._inputs)])
else:
outs = getattr(self, mode + '_batch')(data)
outputs.append(outs)
logs['step'] = step

@ -45,6 +45,18 @@ class TestDownload(unittest.TestCase):
url = 'https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0t.pdparams'
self.download(url, None)
def test_download_and_uncompress(self):
urls = [
"https://paddle-hapi.bj.bcebos.com/unittest/files.tar",
"https://paddle-hapi.bj.bcebos.com/unittest/files.zip",
"https://paddle-hapi.bj.bcebos.com/unittest/single_dir.tar",
"https://paddle-hapi.bj.bcebos.com/unittest/single_dir.zip",
"https://paddle-hapi.bj.bcebos.com/unittest/single_file.tar",
"https://paddle-hapi.bj.bcebos.com/unittest/single_file.zip",
]
for url in urls:
self.download(url, None)
if __name__ == '__main__':
unittest.main()

@ -0,0 +1,132 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# when test, you should add hapi root path to the PYTHONPATH,
# export PYTHONPATH=PATH_TO_HAPI:$PYTHONPATH
import unittest
import os
import tempfile
import cv2
import shutil
import numpy as np
from paddle.incubate.hapi.datasets import DatasetFolder
from paddle.incubate.hapi.vision.transforms import transforms
class TestTransforms(unittest.TestCase):
def setUp(self):
self.data_dir = tempfile.mkdtemp()
for i in range(2):
sub_dir = os.path.join(self.data_dir, 'class_' + str(i))
if not os.path.exists(sub_dir):
os.makedirs(sub_dir)
for j in range(2):
if j == 0:
fake_img = (np.random.random(
(280, 350, 3)) * 255).astype('uint8')
else:
fake_img = (np.random.random(
(400, 300, 3)) * 255).astype('uint8')
cv2.imwrite(os.path.join(sub_dir, str(j) + '.jpg'), fake_img)
def tearDown(self):
shutil.rmtree(self.data_dir)
def do_transform(self, trans):
dataset_folder = DatasetFolder(self.data_dir, transform=trans)
for _ in dataset_folder:
pass
def test_trans_all(self):
normalize = transforms.Normalize(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.120, 57.375])
trans = transforms.Compose([
transforms.RandomResizedCrop(224), transforms.GaussianNoise(),
transforms.ColorJitter(
brightness=0.4, contrast=0.4, saturation=0.4,
hue=0.4), transforms.RandomHorizontalFlip(),
transforms.Permute(mode='CHW'), normalize
])
self.do_transform(trans)
def test_trans_resize(self):
trans = transforms.Compose([
transforms.Resize(300, [0, 1]),
transforms.RandomResizedCrop((280, 280)),
transforms.Resize(280, [0, 1]),
transforms.Resize((256, 200)),
transforms.Resize((180, 160)),
transforms.CenterCrop(128),
transforms.CenterCrop((128, 128)),
])
self.do_transform(trans)
def test_trans_centerCrop(self):
trans = transforms.Compose([
transforms.CenterCropResize(224),
transforms.CenterCropResize(128, 160),
])
self.do_transform(trans)
def test_flip(self):
trans = transforms.Compose([
transforms.RandomHorizontalFlip(1.0),
transforms.RandomHorizontalFlip(0.0),
transforms.RandomVerticalFlip(0.0),
transforms.RandomVerticalFlip(1.0),
])
self.do_transform(trans)
def test_color_jitter(self):
trans = transforms.BatchCompose([
transforms.BrightnessTransform(0.0),
transforms.HueTransform(0.0),
transforms.SaturationTransform(0.0),
transforms.ContrastTransform(0.0),
])
self.do_transform(trans)
def test_exception(self):
trans = transforms.Compose([transforms.Resize(-1)])
trans_batch = transforms.BatchCompose([transforms.Resize(-1)])
with self.assertRaises(Exception):
self.do_transform(trans)
with self.assertRaises(Exception):
self.do_transform(trans_batch)
with self.assertRaises(ValueError):
transforms.ContrastTransform(-1.0)
with self.assertRaises(ValueError):
transforms.SaturationTransform(-1.0),
with self.assertRaises(ValueError):
transforms.HueTransform(-1.0)
with self.assertRaises(ValueError):
transforms.BrightnessTransform(-1.0)
def test_info(self):
str(transforms.Compose([transforms.Resize((224, 224))]))
str(transforms.BatchCompose([transforms.Resize((224, 224))]))
if __name__ == '__main__':
unittest.main()

@ -0,0 +1,84 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle.incubate.hapi.vision.models as models
from paddle.incubate.hapi.model import Input
class TestVisonModels(unittest.TestCase):
def models_infer(self, arch, pretrained=False, batch_norm=False):
x = np.array(np.random.random((2, 3, 224, 224)), dtype=np.float32)
if batch_norm:
model = models.__dict__[arch](pretrained=pretrained,
batch_norm=True)
else:
model = models.__dict__[arch](pretrained=pretrained)
inputs = [Input([None, 3, 224, 224], 'float32', name='image')]
model.prepare(inputs=inputs)
model.test_batch(x)
def test_mobilenetv2_pretrained(self):
self.models_infer('mobilenet_v2', pretrained=True)
def test_mobilenetv1(self):
self.models_infer('mobilenet_v1')
def test_vgg11(self):
self.models_infer('vgg11')
def test_vgg13(self):
self.models_infer('vgg13')
def test_vgg16(self):
self.models_infer('vgg16')
def test_vgg16_bn(self):
self.models_infer('vgg16', batch_norm=True)
def test_vgg19(self):
self.models_infer('vgg19')
def test_resnet18(self):
self.models_infer('resnet18')
def test_resnet34(self):
self.models_infer('resnet34')
def test_resnet50(self):
self.models_infer('resnet50')
def test_resnet101(self):
self.models_infer('resnet101')
def test_resnet152(self):
self.models_infer('resnet152')
def test_lenet(self):
lenet = models.__dict__['LeNet']()
inputs = [Input([None, 1, 28, 28], 'float32', name='x')]
lenet.prepare(inputs=inputs)
x = np.array(np.random.random((2, 1, 28, 28)), dtype=np.float32)
lenet.test_batch(x)
if __name__ == '__main__':
unittest.main()

@ -13,6 +13,9 @@
# limitations under the License.
from . import models
from . import transforms
from .models import *
from .transforms import *
__all__ = models.__all__
__all__ = models.__all__ \
+ transforms.__all__

@ -12,7 +12,20 @@
#See the License for the specific language governing permissions and
#limitations under the License.
from . import resnet
from . import vgg
from . import mobilenetv1
from . import mobilenetv2
from . import lenet
from .resnet import *
from .mobilenetv1 import *
from .mobilenetv2 import *
from .vgg import *
from .lenet import *
__all__ = lenet.__all__
__all__ = resnet.__all__ \
+ vgg.__all__ \
+ mobilenetv1.__all__ \
+ mobilenetv2.__all__ \
+ lenet.__all__

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -0,0 +1,245 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.container import Sequential
from ...model import Model
from ...download import get_weights_path_from_url
__all__ = [
'VGG',
'vgg11',
'vgg13',
'vgg16',
'vgg19',
]
model_urls = {
'vgg16': ('https://paddle-hapi.bj.bcebos.com/models/vgg16.pdparams',
'c788f453a3b999063e8da043456281ee')
}
class Classifier(fluid.dygraph.Layer):
def __init__(self, num_classes, classifier_activation='softmax'):
super(Classifier, self).__init__()
self.linear1 = Linear(512 * 7 * 7, 4096)
self.linear2 = Linear(4096, 4096)
self.linear3 = Linear(4096, num_classes, act=classifier_activation)
def forward(self, x):
x = self.linear1(x)
x = fluid.layers.relu(x)
x = fluid.layers.dropout(x, 0.5)
x = self.linear2(x)
x = fluid.layers.relu(x)
x = fluid.layers.dropout(x, 0.5)
out = self.linear3(x)
return out
class VGG(Model):
"""VGG model from
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
Args:
features (fluid.dygraph.Layer): vgg features create by function make_layers.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import VGG
from paddle.incubate.hapi.vision.models.vgg import make_layers
vgg11_cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
features = make_layers(vgg11_cfg)
vgg11 = VGG(features)
"""
def __init__(self,
features,
num_classes=1000,
classifier_activation='softmax'):
super(VGG, self).__init__()
self.features = features
self.num_classes = num_classes
if num_classes > 0:
classifier = Classifier(num_classes, classifier_activation)
self.classifier = self.add_sublayer("classifier",
Sequential(classifier))
def forward(self, x):
x = self.features(x)
if self.num_classes > 0:
x = fluid.layers.flatten(x, 1)
x = self.classifier(x)
return x
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [Pool2D(pool_size=2, pool_stride=2)]
else:
if batch_norm:
conv2d = Conv2D(in_channels, v, filter_size=3, padding=1)
layers += [conv2d, BatchNorm(v, act='relu')]
else:
conv2d = Conv2D(
in_channels, v, filter_size=3, padding=1, act='relu')
layers += [conv2d]
in_channels = v
return Sequential(*layers)
cfgs = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B':
[64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [
64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512,
512, 512, 'M'
],
'E': [
64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512,
'M', 512, 512, 512, 512, 'M'
],
}
def _vgg(arch, cfg, batch_norm, pretrained, **kwargs):
model = VGG(make_layers(
cfgs[cfg], batch_norm=batch_norm),
num_classes=1000,
**kwargs)
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path_from_url(model_urls[arch][0],
model_urls[arch][1])
assert weight_path.endswith(
'.pdparams'), "suffix of weight must be .pdparams"
model.load(weight_path)
return model
def vgg11(pretrained=False, batch_norm=False, **kwargs):
"""VGG 11-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import vgg11
# build model
model = vgg11()
# build vgg11 model with batch_norm
model = vgg11(batch_norm=True)
"""
model_name = 'vgg11'
if batch_norm:
model_name += ('_bn')
return _vgg(model_name, 'A', batch_norm, pretrained, **kwargs)
def vgg13(pretrained=False, batch_norm=False, **kwargs):
"""VGG 13-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import vgg13
# build model
model = vgg13()
# build vgg13 model with batch_norm
model = vgg13(batch_norm=True)
"""
model_name = 'vgg13'
if batch_norm:
model_name += ('_bn')
return _vgg(model_name, 'B', batch_norm, pretrained, **kwargs)
def vgg16(pretrained=False, batch_norm=False, **kwargs):
"""VGG 16-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import vgg16
# build model
model = vgg16()
# build vgg16 model with batch_norm
model = vgg16(batch_norm=True)
"""
model_name = 'vgg16'
if batch_norm:
model_name += ('_bn')
return _vgg(model_name, 'D', batch_norm, pretrained, **kwargs)
def vgg19(pretrained=False, batch_norm=False, **kwargs):
"""VGG 19-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import vgg19
# build model
model = vgg19()
# build vgg19 model with batch_norm
model = vgg19(batch_norm=True)
"""
model_name = 'vgg19'
if batch_norm:
model_name += ('_bn')
return _vgg(model_name, 'E', batch_norm, pretrained, **kwargs)

@ -0,0 +1,22 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import transforms
from . import functional
from .transforms import *
from .functional import *
__all__ = transforms.__all__ \
+ functional.__all__

@ -0,0 +1,101 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import collections
import random
import cv2
import numpy as np
if sys.version_info < (3, 3):
Sequence = collections.Sequence
Iterable = collections.Iterable
else:
Sequence = collections.abc.Sequence
Iterable = collections.abc.Iterable
__all__ = ['flip', 'resize']
def flip(image, code):
"""
Accordding to the code (the type of flip), flip the input image
Args:
image: Input image, with (H, W, C) shape
code: Code that indicates the type of flip.
-1 : Flip horizontally and vertically
0 : Flip vertically
1 : Flip horizontally
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import functional as F
fake_img = np.random.rand(224, 224, 3)
# flip horizontally and vertically
F.flip(fake_img, -1)
# flip vertically
F.flip(fake_img, 0)
# flip horizontally
F.flip(fake_img, 1)
"""
return cv2.flip(image, flipCode=code)
def resize(img, size, interpolation=cv2.INTER_LINEAR):
"""
resize the input data to given size
Args:
input: Input data, could be image or masks, with (H, W, C) shape
size: Target size of input data, with (height, width) shape.
interpolation: Interpolation method.
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import functional as F
fake_img = np.random.rand(256, 256, 3)
F.resize(fake_img, 224)
F.resize(fake_img, (200, 150))
"""
if isinstance(interpolation, Sequence):
interpolation = random.choice(interpolation)
if isinstance(size, int):
h, w = img.shape[:2]
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return cv2.resize(img, (ow, oh), interpolation=interpolation)
else:
oh = size
ow = int(size * w / h)
return cv2.resize(img, (ow, oh), interpolation=interpolation)
else:
return cv2.resize(img, size[::-1], interpolation=interpolation)

File diff suppressed because it is too large Load Diff

@ -182,6 +182,7 @@ packages=['paddle',
'paddle.incubate.hapi.datasets',
'paddle.incubate.hapi.vision',
'paddle.incubate.hapi.vision.models',
'paddle.incubate.hapi.vision.transforms',
'paddle.io',
'paddle.nn',
'paddle.nn.functional',

Loading…
Cancel
Save