Implementing the Adagrad optimizer step operator

revert-4814-Add_sequence_project_op
Kexin Zhao 8 years ago
parent 8db3afad29
commit 1ac654a69f

@ -0,0 +1,85 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/adagrad_op.h"
namespace paddle {
namespace operators {
class AdagradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContextBase *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("param"),
"Input(param) of AdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("grad"),
"Input(grad) of AdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("moment"),
"Input(moment) of AdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("param_out"),
"Output(param_out) of AdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("moment_out"),
"Output(moment_out) of AdagradOp should not be null.");
auto param_dim = ctx->GetInputDim("param");
PADDLE_ENFORCE_EQ(
param_dim, ctx->GetInputDim("grad"),
"Param and grad input of AdagradOp should have the same dimension.");
PADDLE_ENFORCE_EQ(
param_dim, ctx->GetInputDim("moment"),
"Param and moment input of AdagradOp should have the same dimension.");
ctx->SetOutputDim("param_out", param_dim);
ctx->SetOutputDim("moment_out", param_dim);
}
};
class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AdagradOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("param", "Input parameter");
AddInput("grad", "Input gradient");
AddInput("moment", "Second moment");
AddOutput("param_out", "Output parameter");
AddOutput("moment_out", "Output second moment");
AddAttr<float>("learning_rate", "Learning rate");
AddAttr<float>("epsilon", "Constant for numerical stability");
AddComment(R"DOC(
Adaptive Gradient Algorithm (Adagrad).
moment_out = moment + grad * grad
param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon)
The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
does not have the epsilon attribute. It is added here for numerical stability
by avoiding division by zero.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adagrad, ops::AdagradOp, ops::AdagradOpMaker);
REGISTER_OP_CPU_KERNEL(adagrad,
ops::AdagradOpKernel<paddle::platform::CPUPlace, float>);

@ -0,0 +1,20 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/adagrad_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(adagrad,
ops::AdagradOpKernel<paddle::platform::GPUPlace, float>);

@ -0,0 +1,53 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename Place, typename T>
class AdagradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto param_out = ctx.Output<Tensor>("param_out");
auto moment_out = ctx.Output<Tensor>("moment_out");
param_out->mutable_data<T>(ctx.GetPlace());
moment_out->mutable_data<T>(ctx.GetPlace());
float lr = ctx.Attr<float>("learning_rate");
float epsilon = ctx.Attr<float>("epsilon");
auto p = EigenVector<T>::Flatten(*ctx.Input<Tensor>("param"));
auto g = EigenVector<T>::Flatten(*ctx.Input<Tensor>("grad"));
auto m = EigenVector<T>::Flatten(*ctx.Input<Tensor>("moment"));
auto p_out = EigenVector<T>::Flatten(*param_out);
auto m_out = EigenVector<T>::Flatten(*moment_out);
auto place = ctx.GetEigenDevice<Place>();
m_out.device(place) = m + g * g;
p_out.device(place) = p - lr * g / (m_out.sqrt() + epsilon);
}
};
} // namespace operators
} // namespace paddle

@ -0,0 +1,32 @@
import unittest
import numpy as np
from op_test import OpTest
class TestAdagradOp(OpTest):
def setUp(self):
self.op_type = "adagrad"
param = np.random.random((123, 321)).astype("float32")
grad = np.random.random((123, 321)).astype("float32")
moment = np.zeros((123, 321)).astype("float32")
learning_rate = 0.01
epsilon = 1e-6
self.inputs = {'param': param, 'grad': grad, 'moment': moment}
self.attrs = {'learning_rate': learning_rate, 'epsilon': epsilon}
moment_out = moment + grad * grad
param_out = param - learning_rate * grad / (np.sqrt(moment_out) +
epsilon)
self.outputs = {'param_out': param_out, 'moment_out': moment_out}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()
Loading…
Cancel
Save