parent
8db3afad29
commit
1ac654a69f
@ -0,0 +1,85 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/adagrad_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class AdagradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContextBase *ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("param"),
|
||||
"Input(param) of AdagradOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("grad"),
|
||||
"Input(grad) of AdagradOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("moment"),
|
||||
"Input(moment) of AdagradOp should not be null.");
|
||||
|
||||
PADDLE_ENFORCE(ctx->HasOutput("param_out"),
|
||||
"Output(param_out) of AdagradOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("moment_out"),
|
||||
"Output(moment_out) of AdagradOp should not be null.");
|
||||
|
||||
auto param_dim = ctx->GetInputDim("param");
|
||||
PADDLE_ENFORCE_EQ(
|
||||
param_dim, ctx->GetInputDim("grad"),
|
||||
"Param and grad input of AdagradOp should have the same dimension.");
|
||||
PADDLE_ENFORCE_EQ(
|
||||
param_dim, ctx->GetInputDim("moment"),
|
||||
"Param and moment input of AdagradOp should have the same dimension.");
|
||||
|
||||
ctx->SetOutputDim("param_out", param_dim);
|
||||
ctx->SetOutputDim("moment_out", param_dim);
|
||||
}
|
||||
};
|
||||
|
||||
class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
AdagradOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("param", "Input parameter");
|
||||
AddInput("grad", "Input gradient");
|
||||
AddInput("moment", "Second moment");
|
||||
|
||||
AddOutput("param_out", "Output parameter");
|
||||
AddOutput("moment_out", "Output second moment");
|
||||
|
||||
AddAttr<float>("learning_rate", "Learning rate");
|
||||
AddAttr<float>("epsilon", "Constant for numerical stability");
|
||||
AddComment(R"DOC(
|
||||
|
||||
Adaptive Gradient Algorithm (Adagrad).
|
||||
|
||||
moment_out = moment + grad * grad
|
||||
param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon)
|
||||
|
||||
The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
|
||||
does not have the epsilon attribute. It is added here for numerical stability
|
||||
by avoiding division by zero.
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_WITHOUT_GRADIENT(adagrad, ops::AdagradOp, ops::AdagradOpMaker);
|
||||
REGISTER_OP_CPU_KERNEL(adagrad,
|
||||
ops::AdagradOpKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,20 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/adagrad_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(adagrad,
|
||||
ops::AdagradOpKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,53 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||
|
||||
template <typename Place, typename T>
|
||||
class AdagradOpKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto param_out = ctx.Output<Tensor>("param_out");
|
||||
auto moment_out = ctx.Output<Tensor>("moment_out");
|
||||
|
||||
param_out->mutable_data<T>(ctx.GetPlace());
|
||||
moment_out->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
float lr = ctx.Attr<float>("learning_rate");
|
||||
float epsilon = ctx.Attr<float>("epsilon");
|
||||
|
||||
auto p = EigenVector<T>::Flatten(*ctx.Input<Tensor>("param"));
|
||||
auto g = EigenVector<T>::Flatten(*ctx.Input<Tensor>("grad"));
|
||||
auto m = EigenVector<T>::Flatten(*ctx.Input<Tensor>("moment"));
|
||||
auto p_out = EigenVector<T>::Flatten(*param_out);
|
||||
auto m_out = EigenVector<T>::Flatten(*moment_out);
|
||||
auto place = ctx.GetEigenDevice<Place>();
|
||||
|
||||
m_out.device(place) = m + g * g;
|
||||
p_out.device(place) = p - lr * g / (m_out.sqrt() + epsilon);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,32 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestAdagradOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "adagrad"
|
||||
|
||||
param = np.random.random((123, 321)).astype("float32")
|
||||
grad = np.random.random((123, 321)).astype("float32")
|
||||
moment = np.zeros((123, 321)).astype("float32")
|
||||
|
||||
learning_rate = 0.01
|
||||
epsilon = 1e-6
|
||||
|
||||
self.inputs = {'param': param, 'grad': grad, 'moment': moment}
|
||||
|
||||
self.attrs = {'learning_rate': learning_rate, 'epsilon': epsilon}
|
||||
|
||||
moment_out = moment + grad * grad
|
||||
param_out = param - learning_rate * grad / (np.sqrt(moment_out) +
|
||||
epsilon)
|
||||
|
||||
self.outputs = {'param_out': param_out, 'moment_out': moment_out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue