|
|
|
@ -1,4 +1,4 @@
|
|
|
|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
@ -14,6 +14,8 @@ limitations under the License. */
|
|
|
|
|
|
|
|
|
|
#define EIGEN_USE_GPU
|
|
|
|
|
|
|
|
|
|
#include <cub/cub.cuh>
|
|
|
|
|
#include "paddle/fluid/operators/math/cross_entropy.h"
|
|
|
|
|
#include "paddle/fluid/operators/softmax_with_cross_entropy_op.h"
|
|
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
@ -53,8 +55,196 @@ __global__ void SoftCrossEntropyGradientKernel(T* logit_grad,
|
|
|
|
|
logit_grad[ids] = loss_grad[row_ids] * (logit_grad[ids] - labels[ids]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
static __device__ __forceinline__ float real_exp(float x) { return expf(x); }
|
|
|
|
|
static __device__ __forceinline__ double real_exp(double x) { return exp(x); }
|
|
|
|
|
static __device__ __forceinline__ float real_log(float x) {
|
|
|
|
|
return math::TolerableValue<float>()(logf(x));
|
|
|
|
|
}
|
|
|
|
|
static __device__ __forceinline__ double real_log(double x) {
|
|
|
|
|
return math::TolerableValue<double>()(log(x));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/** In the following codes, 3 CUDA kernels are implemented to calculate softmax
|
|
|
|
|
* and loss **/
|
|
|
|
|
/*
|
|
|
|
|
Supposing the x is `logits` and y is `labels`, the equations are as
|
|
|
|
|
followings:
|
|
|
|
|
|
|
|
|
|
cross\_entropy_i = \sum_{j}[- y_i_j * log({e^{x_i_j}/\sum_{j}e^{x_i_j}})]
|
|
|
|
|
= \sum_{j}[- y_i_j * log({e^{x_i_j - max_i}/\sum_{j}e^{x_i_j-max_i}})]
|
|
|
|
|
= \sum_{j}[-y_i_j * (x_i_j - max_i - log\sum_{j}e^{x_i_j - max_i})]
|
|
|
|
|
= \sum_{j}[-y_i_j * (x_i_j - max_i - logDiffMaxSum_i)]
|
|
|
|
|
= \sum_{j}(-y_i_j * tmp_i_j)
|
|
|
|
|
|
|
|
|
|
softmax_i_j = e^{tmp_i_j}
|
|
|
|
|
|
|
|
|
|
where:
|
|
|
|
|
max_i = \max_{j}{x_i_j}
|
|
|
|
|
logDiffMaxSum_i = log\sum_{j}e^{x_i_j - max_i}
|
|
|
|
|
tmp_i_j = x_i_j - max_i - logDiffMaxSum_i
|
|
|
|
|
|
|
|
|
|
Therefore, the calculation can be separated into 3 steps:
|
|
|
|
|
Step 1: row-wise operation to calculate max_i
|
|
|
|
|
Step 2: row-wise operation to calculate logDiffMaxSum_i
|
|
|
|
|
Step 3: caculate tmp_i_j, and finally get softmax_i_j and cross\_entropy_i
|
|
|
|
|
|
|
|
|
|
To save memory, we can share memory among max_i, logDiffMaxSum_i and
|
|
|
|
|
cross\_entropy_i.
|
|
|
|
|
In this way, the 3 steps should be changed to:
|
|
|
|
|
Step 1 (RowReductionForMax): row-wise operation to calculate max_i
|
|
|
|
|
Step 2 (RowReductionForDiffMaxSum): calculate immediate result of softmax'_i_j =
|
|
|
|
|
x_i_j - max_i, and row-wise operation to calculate logDiffMaxSum_i
|
|
|
|
|
Step 3 (RowReductionForSoftmaxAndCrossEntropy): calculate tmp_i_j = softmax'_i_j
|
|
|
|
|
- logDiffMaxSum_i, and finally get softmax_i_j and cross\_entropy_i
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
// There are 3 kinds of reduce algorithms in cub:
|
|
|
|
|
// BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY
|
|
|
|
|
// BLOCK_REDUCE_RAKING
|
|
|
|
|
// BLOCK_REDUCE_WARP_REDUCTIONS (default)
|
|
|
|
|
template <typename T, int BlockDim>
|
|
|
|
|
using BlockReduce =
|
|
|
|
|
cub::BlockReduce<T, BlockDim /*, cub::BLOCK_REDUCE_WARP_REDUCTIONS*/>;
|
|
|
|
|
|
|
|
|
|
template <typename T, int BlockDim>
|
|
|
|
|
using BlockReduceTempStorage = typename BlockReduce<T, BlockDim>::TempStorage;
|
|
|
|
|
|
|
|
|
|
// Make sure that BlockDim <= feature_size
|
|
|
|
|
// This kernel is used to calculate the max element of each row
|
|
|
|
|
template <typename T, int BlockDim>
|
|
|
|
|
__global__ void RowReductionForMax(const T* logits_data, T* max_data,
|
|
|
|
|
int feature_size) {
|
|
|
|
|
__shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;
|
|
|
|
|
|
|
|
|
|
auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
|
|
|
|
|
auto end_idx = feature_size * (blockIdx.x + 1);
|
|
|
|
|
|
|
|
|
|
T cur_max = logits_data[beg_idx];
|
|
|
|
|
beg_idx += BlockDim;
|
|
|
|
|
while (beg_idx < end_idx) {
|
|
|
|
|
if (cur_max < logits_data[beg_idx]) {
|
|
|
|
|
cur_max = logits_data[beg_idx];
|
|
|
|
|
}
|
|
|
|
|
beg_idx += BlockDim;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cur_max = BlockReduce<T, BlockDim>(temp_storage).Reduce(cur_max, cub::Max());
|
|
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
|
max_data[blockIdx.x] = cur_max < -64 ? -64 : cur_max;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Make sure that BlockDim <= feature_size
|
|
|
|
|
template <typename T, int BlockDim>
|
|
|
|
|
__global__ void RowReductionForDiffMaxSum(const T* logits_data, T* max_data,
|
|
|
|
|
T* softmax, int feature_size) {
|
|
|
|
|
__shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;
|
|
|
|
|
|
|
|
|
|
auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
|
|
|
|
|
auto end_idx = feature_size * (blockIdx.x + 1);
|
|
|
|
|
|
|
|
|
|
auto block_max = max_data[blockIdx.x];
|
|
|
|
|
|
|
|
|
|
softmax[beg_idx] = logits_data[beg_idx] - block_max;
|
|
|
|
|
T diff_max_sum = real_exp(softmax[beg_idx]);
|
|
|
|
|
beg_idx += BlockDim;
|
|
|
|
|
while (beg_idx < end_idx) {
|
|
|
|
|
softmax[beg_idx] = logits_data[beg_idx] - block_max;
|
|
|
|
|
diff_max_sum += real_exp(softmax[beg_idx]);
|
|
|
|
|
beg_idx += BlockDim;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
diff_max_sum =
|
|
|
|
|
BlockReduce<T, BlockDim>(temp_storage).Reduce(diff_max_sum, cub::Sum());
|
|
|
|
|
if (threadIdx.x == 0) max_data[blockIdx.x] = real_log(diff_max_sum);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Make sure that BlockDim <= feature_size
|
|
|
|
|
template <typename T, int BlockDim>
|
|
|
|
|
__global__ void RowReductionForSoftmaxAndCrossEntropy(const T* logits_data,
|
|
|
|
|
const T* labels_data,
|
|
|
|
|
T* loss_data, T* softmax,
|
|
|
|
|
int feature_size) {
|
|
|
|
|
__shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;
|
|
|
|
|
|
|
|
|
|
auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
|
|
|
|
|
auto end_idx = feature_size * (blockIdx.x + 1);
|
|
|
|
|
|
|
|
|
|
// log_diff_max_sum shares memory with loss
|
|
|
|
|
auto block_log_diff_max_sum = loss_data[blockIdx.x];
|
|
|
|
|
auto tmp = softmax[beg_idx] - block_log_diff_max_sum;
|
|
|
|
|
softmax[beg_idx] = real_exp(tmp);
|
|
|
|
|
auto loss = -labels_data[beg_idx] * tmp;
|
|
|
|
|
beg_idx += BlockDim;
|
|
|
|
|
while (beg_idx < end_idx) {
|
|
|
|
|
tmp = softmax[beg_idx] - block_log_diff_max_sum;
|
|
|
|
|
softmax[beg_idx] = real_exp(tmp);
|
|
|
|
|
loss -= (labels_data[beg_idx] * tmp);
|
|
|
|
|
beg_idx += BlockDim;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
loss = BlockReduce<T, BlockDim>(temp_storage).Reduce(loss, cub::Sum());
|
|
|
|
|
if (threadIdx.x == 0) loss_data[blockIdx.x] = loss;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
__global__ void SetSoftmaxToOneWhenFeatureSizeIsOne(T* out, int batch_size) {
|
|
|
|
|
auto idx = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
|
if (idx < batch_size) out[idx] = static_cast<T>(1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
static void SoftmaxWithCrossEntropyFusedKernel(const T* logits_data,
|
|
|
|
|
const T* labels_data,
|
|
|
|
|
T* softmax_data, T* loss_data,
|
|
|
|
|
int batch_size, int feature_size,
|
|
|
|
|
cudaStream_t stream) {
|
|
|
|
|
constexpr int kMaxBlockDim = 512;
|
|
|
|
|
int block_dim = feature_size >= kMaxBlockDim
|
|
|
|
|
? kMaxBlockDim
|
|
|
|
|
: (1 << static_cast<int>(std::log2(feature_size)));
|
|
|
|
|
|
|
|
|
|
#define CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(BlockDim) \
|
|
|
|
|
case BlockDim: \
|
|
|
|
|
RowReductionForMax<T, BlockDim><<<batch_size, BlockDim, 0, stream>>>( \
|
|
|
|
|
logits_data, loss_data, feature_size); \
|
|
|
|
|
RowReductionForDiffMaxSum<T, \
|
|
|
|
|
BlockDim><<<batch_size, BlockDim, 0, stream>>>( \
|
|
|
|
|
logits_data, loss_data, softmax_data, feature_size); \
|
|
|
|
|
RowReductionForSoftmaxAndCrossEntropy< \
|
|
|
|
|
T, BlockDim><<<batch_size, BlockDim, 0, stream>>>( \
|
|
|
|
|
logits_data, labels_data, loss_data, softmax_data, feature_size); \
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
switch (block_dim) {
|
|
|
|
|
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(512);
|
|
|
|
|
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(256);
|
|
|
|
|
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(128);
|
|
|
|
|
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(64);
|
|
|
|
|
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(32);
|
|
|
|
|
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(16);
|
|
|
|
|
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(8);
|
|
|
|
|
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(4);
|
|
|
|
|
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(2);
|
|
|
|
|
case 1:
|
|
|
|
|
SetSoftmaxToOneWhenFeatureSizeIsOne<<<(batch_size + kMaxBlockDim - 1) /
|
|
|
|
|
kMaxBlockDim,
|
|
|
|
|
kMaxBlockDim, 0, stream>>>(
|
|
|
|
|
softmax_data, batch_size);
|
|
|
|
|
cudaMemsetAsync(loss_data, 0, batch_size, stream);
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
PADDLE_THROW("BlockDim must be 2^n in softmax_with_cross_entropy_op");
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#undef CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
@ -66,14 +256,24 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> {
|
|
|
|
|
Tensor* softmax = context.Output<Tensor>("Softmax");
|
|
|
|
|
|
|
|
|
|
Tensor* loss = context.Output<Tensor>("Loss");
|
|
|
|
|
softmax->mutable_data<T>(context.GetPlace());
|
|
|
|
|
loss->mutable_data<T>(context.GetPlace());
|
|
|
|
|
|
|
|
|
|
math::SoftmaxFunctor<platform::CUDADeviceContext, T>()(
|
|
|
|
|
context.cuda_device_context(), logits, softmax);
|
|
|
|
|
math::CrossEntropyFunctor<platform::CUDADeviceContext, T>()(
|
|
|
|
|
context.cuda_device_context(), loss, softmax, labels,
|
|
|
|
|
context.Attr<bool>("soft_label"));
|
|
|
|
|
auto* softmax_data = softmax->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto* loss_data = loss->mutable_data<T>(context.GetPlace());
|
|
|
|
|
|
|
|
|
|
auto soft_label = context.Attr<bool>("soft_label");
|
|
|
|
|
if (soft_label) {
|
|
|
|
|
int batch_size = logits->dims()[0];
|
|
|
|
|
int feature_size = logits->dims()[1];
|
|
|
|
|
auto* logits_data = logits->data<T>();
|
|
|
|
|
auto* labels_data = labels->data<T>();
|
|
|
|
|
SoftmaxWithCrossEntropyFusedKernel(
|
|
|
|
|
logits_data, labels_data, softmax_data, loss_data, batch_size,
|
|
|
|
|
feature_size, context.cuda_device_context().stream());
|
|
|
|
|
} else {
|
|
|
|
|
math::SoftmaxCUDNNFunctor<T>()(context.cuda_device_context(), logits,
|
|
|
|
|
softmax);
|
|
|
|
|
math::CrossEntropyFunctor<platform::CUDADeviceContext, T>()(
|
|
|
|
|
context.cuda_device_context(), loss, softmax, labels, false);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|