Feature/dynamic recurrent op forward test (#4729)
parent
6316b40a2c
commit
1c1f73b46d
@ -0,0 +1,111 @@
|
||||
import logging
|
||||
import paddle.v2.framework.core as core
|
||||
import unittest
|
||||
from paddle.v2.framework.op import Operator, DynamicRecurrentOp
|
||||
import numpy as np
|
||||
|
||||
|
||||
def create_tensor(scope, name, shape, np_data):
|
||||
tensor = scope.new_var(name).get_tensor()
|
||||
tensor.set_dims(shape)
|
||||
tensor.set(np_data, core.CPUPlace())
|
||||
return tensor
|
||||
|
||||
|
||||
class DynamicRecurrentOpTest(unittest.TestCase):
|
||||
'''
|
||||
Test RNNOp
|
||||
|
||||
equation:
|
||||
h_t = \sigma (W x_t + U h_{t-1})
|
||||
weights:
|
||||
- W
|
||||
- U
|
||||
vars:
|
||||
- x
|
||||
memories:
|
||||
- h
|
||||
outputs:
|
||||
- h
|
||||
'''
|
||||
|
||||
# for siplicity, just one level LoD
|
||||
lod_py = [[0, 4, 7, 9, 10]]
|
||||
input_dim = 30
|
||||
num_sents = len(lod_py[0]) - 1
|
||||
weight_dim = 15
|
||||
|
||||
def forward(self):
|
||||
self.scope = core.Scope()
|
||||
self.create_global_variables()
|
||||
self.create_rnn_op()
|
||||
self.create_step_net()
|
||||
ctx = core.DeviceContext.create(core.CPUPlace())
|
||||
self.rnnop.run(self.scope, ctx)
|
||||
state = self.rnnop.get_state("h@mem")
|
||||
print 'state size: ', state.size()
|
||||
|
||||
step_inputs = self.rnnop.get_step_input("x")
|
||||
print "x size ", step_inputs.size()
|
||||
for i in range(step_inputs.size()):
|
||||
print "x %d" % i, np.array(step_inputs.read(i).get_dims())
|
||||
step_outputs = self.rnnop.get_step_output('h@mem')
|
||||
print 'step_outputs.size ', step_outputs.size()
|
||||
output = self.scope.find_var("h@mem").get_tensor()
|
||||
|
||||
print 'output', np.array(output).shape
|
||||
|
||||
def create_global_variables(self):
|
||||
x = np.random.normal(size=(self.lod_py[0][-1],
|
||||
self.input_dim)).astype("float32")
|
||||
W = np.random.normal(size=(self.input_dim,
|
||||
self.input_dim)).astype("float32")
|
||||
U = np.random.normal(size=(self.input_dim,
|
||||
self.input_dim)).astype("float32")
|
||||
h_boot = np.random.normal(size=(self.num_sents,
|
||||
self.input_dim)).astype("float32")
|
||||
# create inlink
|
||||
x_tensor = create_tensor(self.scope, "x",
|
||||
[self.num_sents, self.input_dim], x)
|
||||
x_tensor.set_lod(self.lod_py)
|
||||
create_tensor(self.scope, "W", [self.input_dim, self.input_dim], W)
|
||||
create_tensor(self.scope, "U", [self.input_dim, self.input_dim], U)
|
||||
create_tensor(self.scope, "h_boot", [self.num_sents, self.input_dim],
|
||||
h_boot)
|
||||
self.scope.new_var("step_scopes")
|
||||
self.scope.new_var("h@mem")
|
||||
|
||||
def create_rnn_op(self):
|
||||
# create RNNOp
|
||||
self.rnnop = DynamicRecurrentOp(
|
||||
# inputs
|
||||
inlinks=["x"],
|
||||
boot_memories=["h_boot"],
|
||||
step_net="stepnet",
|
||||
# outputs
|
||||
outlinks=["h@mem"],
|
||||
step_scopes="step_scopes",
|
||||
# attributes
|
||||
pre_memories=["h@pre"],
|
||||
memories=["h@mem"])
|
||||
|
||||
def create_step_net(self):
|
||||
stepnet = core.Net.create()
|
||||
x_fc_op = Operator("mul", X="x", Y="W", Out="Wx")
|
||||
h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh")
|
||||
sum_op = Operator("sum", X=["Wx", "Uh"], Out="sum")
|
||||
sig_op = Operator("sigmoid", X="sum", Y="h@mem")
|
||||
|
||||
for op in [x_fc_op, h_fc_op, sum_op, sig_op]:
|
||||
stepnet.append_op(op)
|
||||
stepnet.complete_add_op(True)
|
||||
self.rnnop.set_stepnet(stepnet)
|
||||
|
||||
def test_forward(self):
|
||||
print 'test recurrent op forward'
|
||||
pd_output = self.forward()
|
||||
print 'pd_output', pd_output
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue