|
|
|
@ -179,9 +179,13 @@ def run_benchmark(model, args):
|
|
|
|
|
outs = train_exe.run(
|
|
|
|
|
feed={"pixel": img_data,
|
|
|
|
|
"label": y_data},
|
|
|
|
|
fetch_list=[avg_cost.name, batch_acc.name, batch_size_tensor.name]
|
|
|
|
|
fetch_list=[
|
|
|
|
|
avg_cost.name, batch_acc.name, batch_size_tensor.name
|
|
|
|
|
]
|
|
|
|
|
) # The accuracy is the accumulation of batches, but not the current batch.
|
|
|
|
|
accuracy.update(value=np.array(np.mean(outs[1])), weight=np.mean(np.array(outs[2])))
|
|
|
|
|
accuracy.update(
|
|
|
|
|
value=np.array(np.mean(outs[1])),
|
|
|
|
|
weight=np.mean(np.array(outs[2])))
|
|
|
|
|
iters += 1
|
|
|
|
|
num_samples += len(y_data)
|
|
|
|
|
loss = np.mean(np.array(outs[0]))
|
|
|
|
|