Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into lstm_bp

fix-typo
dangqingqing 8 years ago
commit 1d7c03e789

1
.gitignore vendored

@ -28,3 +28,4 @@ cmake_install.cmake
paddle/.timestamp
python/paddlepaddle.egg-info/
paddle/pybind/pybind.h
python/paddle/v2/framework/tests/tmp/*

@ -67,7 +67,7 @@ func main() {
cp, err = pserver.LoadCheckpoint(e, idx)
if err != nil {
if err == pserver.ErrCheckpointNotFound {
log.Info("Could not find the pserver checkpoint.")
log.Info("load checkpoint error", "error", err)
} else {
panic(err)
}
@ -99,7 +99,7 @@ func main() {
candy.Must(err)
go func() {
log.Info("starting pserver", log.Ctx{"port": *port})
log.Info("serving pserver", log.Ctx{"port": *port})
err = http.Serve(l, nil)
candy.Must(err)
}()

@ -123,7 +123,8 @@ func paddle_set_dataset(client C.paddle_master_client, path **C.char, size C.int
}
err := c.SetDataset(paths)
if err != nil {
log.Error("error set dataset", log.Ctx{"error": err})
log.Error("error set dataset",
log.Ctx{"error": err, "paths": paths})
return C.PADDLE_MASTER_ERROR
}

@ -121,6 +121,7 @@ func (c *Client) StartGetRecords(passID int) {
}
func (c *Client) getRecords(passID int) {
i := 0
for {
t, err := c.getTask(passID)
if err != nil {
@ -130,12 +131,20 @@ func (c *Client) getRecords(passID int) {
c.ch <- record{nil, err}
break
}
if err.Error() == ErrPassAfter.Error() {
// wait util last pass finishes
time.Sleep(time.Second * 3)
continue
if i%60 == 0 {
log.Debug("getTask of passID error.",
log.Ctx{"error": err, "passID": passID})
i = 0
}
log.Error("getTask error.", log.Ctx{"error": err})
// if err.Error() == ErrPassAfter.Error()
// wait util last pass finishes
// if other error such as network error
// wait to reconnect or task time out
time.Sleep(time.Second * 3)
i += 3
continue
}
for _, chunk := range t.Chunks {

@ -117,6 +117,7 @@ func TestNextRecord(t *testing.T) {
if e != nil {
panic(e)
}
// test for n passes
for pass := 0; pass < 10; pass++ {
c.StartGetRecords(pass)

@ -71,9 +71,15 @@ func newOptimizer(paramWithConfigs ParameterWithConfig, State []byte) *optimizer
cstate = unsafe.Pointer(&s[0])
}
var cptr (*C.uchar)
if len(c) > 0 {
cptr = (*C.uchar)(&c[0])
} else {
log.Error("empty config", "param name", paramWithConfigs.Param.Name)
}
o.config = c
o.opt = C.paddle_create_optimizer(
(*C.uchar)(&c[0]),
cptr,
C.int(len(c)),
C.paddle_element_type(p.ElementType),
cbuffer,

@ -17,12 +17,11 @@ package pserver
import (
"bufio"
"bytes"
"crypto/md5"
"encoding/gob"
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"hash/crc32"
"io/ioutil"
"os"
"path"
@ -40,7 +39,7 @@ type ElementType int
// ErrCheckpointNotFound indicates that the pserver checkpoint could
// not be found.
var ErrCheckpointNotFound = errors.New("checkpoint not found")
var ErrCheckpointNotFound = errors.New("checkpoint not found in etcd")
// RPC error message.
const (
@ -76,7 +75,7 @@ type ParameterWithConfig struct {
type checkpointMeta struct {
UUID string `json:"uuid"`
Path string `json:"path"`
MD5 string `json:"md5"`
CRC32 uint32 `json:"crc32"`
Timestamp int64 `json:"timestamp"`
}
@ -92,7 +91,7 @@ type Service struct {
idx int
checkpointInterval time.Duration
checkpointPath string
client *EtcdClient
client KVStore
mu sync.Mutex
optMap map[string]*optimizer
@ -104,7 +103,12 @@ type parameterCheckpoint struct {
State []byte
}
func loadMeta(e *EtcdClient, idx int) (meta checkpointMeta, err error) {
type KVStore interface {
GetKey(key string, timeout time.Duration) ([]byte, error)
PutKey(key string, value []byte, timeout time.Duration, withLease bool) error
}
func loadMeta(e KVStore, idx int) (meta checkpointMeta, err error) {
v, err := e.GetKey(PsCheckpoint+strconv.Itoa(idx), 3*time.Second)
if err != nil {
return
@ -123,7 +127,7 @@ func loadMeta(e *EtcdClient, idx int) (meta checkpointMeta, err error) {
}
// LoadCheckpoint loads checkpoint from file.
func LoadCheckpoint(e *EtcdClient, idx int) (Checkpoint, error) {
func LoadCheckpoint(e KVStore, idx int) (Checkpoint, error) {
log.Info("Loading checkpoint", "pserver index", idx)
defer traceTime(time.Now(), "load checkpoint")
@ -137,11 +141,8 @@ func LoadCheckpoint(e *EtcdClient, idx int) (Checkpoint, error) {
return nil, err
}
// TODO(helin): change MD5 to CRC since CRC is better for file
// checksum in our use case (emphasize speed over security).
h := md5.New()
md5 := hex.EncodeToString(h.Sum(content))
if md5 != cpMeta.MD5 {
crc32 := crc32.ChecksumIEEE(content)
if crc32 != cpMeta.CRC32 {
return nil, errors.New(WrongChecksum)
}
@ -150,12 +151,13 @@ func LoadCheckpoint(e *EtcdClient, idx int) (Checkpoint, error) {
if err = dec.Decode(&cp); err != nil {
return nil, err
}
return cp, nil
}
// NewService creates a new service, will bypass etcd registration if no
// endpoints specified. It will recovery from checkpoint file if a exists a specified checkpoint.
func NewService(idx int, interval time.Duration, path string, client *EtcdClient, cp Checkpoint) (*Service, error) {
func NewService(idx int, interval time.Duration, path string, client KVStore, cp Checkpoint) (*Service, error) {
s := &Service{
idx: idx,
checkpointInterval: interval,
@ -173,6 +175,7 @@ func NewService(idx int, interval time.Duration, path string, client *EtcdClient
}
s.optMap[p.Param.Name] = newOptimizer(p, item.State)
}
close(s.initialized)
}
return s, nil
}
@ -221,7 +224,7 @@ func (s *Service) FinishInitParams(_ int, _ *int) error {
for range t {
err := s.checkpoint()
if err != nil {
log.Error("finish init params error", log.Ctx{"error": err})
log.Error("checkpoint error", log.Ctx{"error": err})
}
}
}()
@ -274,6 +277,7 @@ func (s *Service) GetParam(name string, parameter *Parameter) error {
parameter.Name = name
parameter.ElementType = opt.elementType
parameter.Content = opt.GetWeights()
log.Info("sending parameter to the trainer", "name", parameter.Name, "size", len(parameter.Content), "type", parameter.ElementType)
return nil
}
@ -354,20 +358,29 @@ func (s *Service) checkpoint() (err error) {
oldMeta, err := loadMeta(s.client, s.idx)
if err == ErrCheckpointNotFound {
log.Info("Do not have existing checkpoint.")
log.Info("old meta not found, skip removing old meta")
err = nil
} else if err == nil {
log.Info("removing old meta")
if oldMeta.Path != "" {
rmErr := os.Remove(oldMeta.Path)
if rmErr != nil {
// log error, but still treat checkpoint as
// successful.
log.Error("remove old meta file error", log.Ctx{"error": rmErr})
}
}
}
if err != nil {
return
}
h := md5.New()
md5 := hex.EncodeToString(h.Sum(buf.Bytes()))
crc32 := crc32.ChecksumIEEE(buf.Bytes())
cpMeta := checkpointMeta{
UUID: id,
Timestamp: time.Now().UnixNano(),
MD5: md5,
CRC32: crc32,
Path: p,
}
@ -381,14 +394,5 @@ func (s *Service) checkpoint() (err error) {
return
}
if oldMeta.Path != "" {
rmErr := os.Remove(oldMeta.Path)
if rmErr != nil {
// log error, but still treat checkpoint as
// successful.
log.Error("remove old meta file error", log.Ctx{"error": rmErr})
}
}
return
}

@ -0,0 +1,86 @@
package pserver
import (
"bytes"
"encoding/binary"
"fmt"
"testing"
"time"
"github.com/stretchr/testify/assert"
)
const testDir = "./test_data"
type myKV struct {
m map[string][]byte
}
func (m *myKV) GetKey(key string, timeout time.Duration) ([]byte, error) {
if m.m == nil {
m.m = make(map[string][]byte)
}
return m.m[key], nil
}
func (m *myKV) PutKey(key string, value []byte, timeout time.Duration, withLease bool) error {
if m.m == nil {
m.m = make(map[string][]byte)
}
m.m[key] = value
return nil
}
func TestCheckpoint(t *testing.T) {
kv := &myKV{}
s, err := NewService(0, time.Hour, testDir, kv, nil)
assert.Nil(t, err)
err = s.checkpoint()
assert.Nil(t, err)
_, err = LoadCheckpoint(kv, 0)
assert.Nil(t, err)
}
func float32ToByte(f float32) []byte {
var buf bytes.Buffer
err := binary.Write(&buf, binary.LittleEndian, f)
if err != nil {
fmt.Println("binary.Write failed:", err)
}
return buf.Bytes()
}
func TestCheckpointWithData(t *testing.T) {
kv := &myKV{}
s, err := NewService(0, time.Hour, testDir, kv, nil)
assert.Nil(t, err)
var content []byte
for i := 0; i < 50000; i++ {
content = append(content, float32ToByte(float32(i))...)
}
p1 := Parameter{Name: "p1", ElementType: 1, Content: content}
err = s.InitParam(ParameterWithConfig{Param: p1}, nil)
assert.Nil(t, err)
err = s.FinishInitParams(0, nil)
assert.Nil(t, err)
var p2 Parameter
err = s.GetParam(p1.Name, &p2)
assert.Nil(t, err)
assert.Equal(t, p1, p2)
err = s.checkpoint()
assert.Nil(t, err)
cp, err := LoadCheckpoint(kv, 0)
assert.Nil(t, err)
s1, err := NewService(0, time.Hour, testDir, kv, cp)
assert.Nil(t, err)
var p3 Parameter
err = s1.GetParam(p1.Name, &p3)
assert.Nil(t, err)
assert.Equal(t, p1, p3)
}

@ -178,7 +178,3 @@ func TestBlockUntilInitialized(t *testing.T) {
wg.Wait()
}
func TestCheckpointSpeed(t *testing.T) {
//TODO(zhihong): test speed
}

@ -15,7 +15,7 @@ nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor)
cc_test(variable_test SRCS variable_test.cc)
cc_library(scope SRCS scope.cc)
cc_library(scope SRCS scope.cc DEPS glog)
cc_test(scope_test SRCS scope_test.cc DEPS scope)
@ -24,9 +24,10 @@ cc_test(program_desc_test SRCS program_desc_test.cc DEPS proto_desc)
cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute)
cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)
cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog)
cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute)
cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog shape_inference)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS attribute ddim op_info operator)
cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog)
cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator glog proto_desc)
cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
@ -42,7 +43,7 @@ add_custom_command(TARGET framework_py_proto POST_BUILD
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context)
cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context fill_constant_op)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward glog)

@ -315,6 +315,7 @@ static void CreateGradVarInBlock(
return false; /* not break */
});
if (need_infer_shape) {
ops[op_index]->InferVarType(block_desc);
ops[op_index]->InferShape(*block_desc);
}
}
@ -452,11 +453,16 @@ ParamGradInfoMap AppendBackward(
std::transform(target_shape_desc.begin(), target_shape_desc.end(),
std::back_inserter(target_shape),
[](int64_t dim) { return static_cast<int>(dim); });
VLOG(3) << "backward from loss=" << target.Name()
<< " data_type=" << target.GetDataType();
std::unique_ptr<OpDescBind> fill_one_op(
new OpDescBind("fill_constant", {}, {{"Out", {fill_one_op_out}}},
{{"shape", target_shape},
{"value", static_cast<float>(1.0)},
{"data_type", framework::DataType::FP32}}));
{"data_type", target.GetDataType()}}));
// infer var type of fill_one_op
fill_one_op->InferVarType(root_block);
root_block->AppendAllocatedOp(std::move(fill_one_op));
size_t forward_op_num = root_block->OpSize();
size_t forward_block_num = program_desc.Size();
@ -475,8 +481,7 @@ ParamGradInfoMap AppendBackward(
std::unordered_map<std::string, GradVarInfo> retv;
auto var = root_block->Var(fill_one_op_out);
// FIXME(qiao) infer the data type
var->SetDataType(framework::DataType::FP32);
var->SetDataType(target.GetDataType());
var->SetShape(target.Shape());
auto& target_grad = retv[target.Name()];
target_grad.name_ = fill_one_op_out;

@ -21,6 +21,8 @@
#include "paddle/framework/var_desc.h"
#include "paddle/operators/net_op.h"
USE_OP(fill_constant);
namespace paddle {
namespace framework {

@ -120,6 +120,17 @@ BlockDesc *BlockDescBind::Proto() {
Flush();
return desc_;
}
BlockDescBind::BlockDescBind(ProgramDescBind *prog, BlockDesc *desc)
: prog_(prog), desc_(desc), need_update_(false) {
for (const VarDesc &var_desc : desc_->vars()) {
vars_[var_desc.name()].reset(new VarDescBind(var_desc));
}
for (const OpDesc &op_desc : desc_->ops()) {
ops_.emplace_back(new OpDescBind(op_desc, prog));
}
}
BlockDescBind::BlockDescBind(const BlockDescBind &other, BlockDesc *desc,
ProgramDescBind *prog)
: prog_(prog), desc_(desc) {

@ -36,8 +36,7 @@ class ProgramDescBind;
class BlockDescBind {
public:
BlockDescBind(ProgramDescBind *prog, BlockDesc *desc)
: prog_(prog), desc_(desc), need_update_(false) {}
BlockDescBind(ProgramDescBind *prog, BlockDesc *desc);
BlockDescBind(const BlockDescBind &other, BlockDesc *desc,
ProgramDescBind *prog);

@ -34,5 +34,25 @@ inline DataType ToDataType(std::type_index type) {
}
}
template <typename Visitor>
inline void VisitDataType(DataType type, Visitor visitor) {
switch (type) {
case DataType::FP32:
visitor.template operator()<float>();
break;
case DataType::FP64:
visitor.template operator()<double>();
break;
case DataType::INT32:
visitor.template operator()<int>();
break;
case DataType::INT64:
visitor.template operator()<int64_t>();
break;
default:
PADDLE_THROW("Not supported");
}
}
} // namespace framework
} // namespace paddle

@ -195,6 +195,14 @@ std::vector<int64_t> vectorize(const DDim& ddim) {
return result;
}
// NOTE: framework::vectorize converts to type int64_t
// which does not fit cudnn inputs.
std::vector<int> vectorize2int(const DDim& ddim) {
std::vector<int64_t> temp = vectorize(ddim);
std::vector<int> result(temp.begin(), temp.end());
return result;
}
struct ProductVisitor : public boost::static_visitor<int64_t> {
template <int D>
int64_t operator()(const Dim<D>& dim) {

@ -93,6 +93,7 @@ int64_t get(const DDim& dim, int idx);
void set(DDim& dim, int idx, int val);
std::vector<int64_t> vectorize(const DDim& ddim);
std::vector<int> vectorize2int(const DDim& ddim);
int64_t product(const DDim& ddim);

@ -28,7 +28,8 @@ enum OpInfoFillType {
kOperator = 0,
kOpProtoAndCheckerMaker = 1,
kGradOpDescMaker = 2,
kVarTypeInference = 3
kVarTypeInference = 3,
kShapeInference = 4
};
template <typename T>
@ -42,7 +43,10 @@ struct OpInfoFillTypeID {
? kGradOpDescMaker
: (std::is_base_of<VarTypeInference, T>::value
? kVarTypeInference
: static_cast<OpInfoFillType>(-1))));
: (std::is_base_of<InferShapeBase, T>::value
? kShapeInference
: static_cast<OpInfoFillType>(
-1)))));
}
};
@ -121,6 +125,16 @@ struct OpInfoFiller<T, kVarTypeInference> {
}
};
template <typename T>
struct OpInfoFiller<T, kShapeInference> {
void operator()(const char* op_type, OpInfo* info) const {
info->infer_shape_ = [](InferShapeContext* ctx) {
T inference;
inference(ctx);
};
}
};
} // namespace details
} // namespace framework

@ -20,6 +20,7 @@ limitations under the License. */
#include <set>
#include <vector>
#include "paddle/framework/feed_fetch_type.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/scope.h"
@ -56,6 +57,22 @@ Executor::~Executor() {
}
}
static void CreateTensor(Variable* var, VarDesc::VarType var_type) {
if (var_type == VarDesc::LOD_TENSOR) {
var->GetMutable<LoDTensor>();
} else if (var_type == VarDesc::SELECTED_ROWS) {
var->GetMutable<SelectedRows>();
} else if (var_type == VarDesc::FEED_MINIBATCH) {
var->GetMutable<FeedFetchList>();
} else if (var_type == VarDesc::FETCH_LIST) {
var->GetMutable<FeedFetchList>();
} else {
PADDLE_THROW(
"Variable type must be "
"LoDTensor/SelectedRows/FEED_MINIBATCH/FETCH_LIST.");
}
}
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id) {
// TODO(tonyyang-svail):
// - only runs on the first device (i.e. no interdevice communication)
@ -69,10 +86,12 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id) {
for (auto& var : block.vars()) {
if (var.persistable()) {
auto* ptr = scope->Var(var.name());
CreateTensor(ptr, var.type());
VLOG(3) << "Create Variable " << var.name()
<< " global, which pointer is " << ptr;
} else {
auto* ptr = local_scope.Var(var.name());
CreateTensor(ptr, var.type());
VLOG(3) << "Create Variable " << var.name()
<< " locally, which pointer is " << ptr;
}

File diff suppressed because it is too large Load Diff

@ -24,6 +24,7 @@ namespace paddle {
namespace framework {
class BlockDescBind;
class ProgramDescBind;
class OpDescBind {
public:
@ -32,11 +33,13 @@ class OpDescBind {
OpDescBind(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs);
OpDescBind(const OpDesc &desc, ProgramDescBind *prog);
OpDesc *Proto();
std::string Type() const { return op_desc_.type(); }
std::string Type() const { return desc_.type(); }
void SetType(const std::string &type) { op_desc_.set_type(type); }
void SetType(const std::string &type) { desc_.set_type(type); }
const std::vector<std::string> &Input(const std::string &name) const;
@ -104,6 +107,8 @@ class OpDescBind {
void InferVarType(BlockDescBind *block) const;
void MarkAsTarget() { desc_.set_is_target(true); }
void Flush();
private:
@ -117,7 +122,7 @@ class OpDescBind {
return ret_val;
}
OpDesc op_desc_;
OpDesc desc_;
VariableNameMap inputs_;
VariableNameMap outputs_;
AttributeMap attrs_;

@ -25,12 +25,19 @@
namespace paddle {
namespace framework {
class InferShapeBase {
public:
virtual ~InferShapeBase() = default;
virtual void operator()(InferShapeContext*) const = 0;
};
struct OpInfo {
OpCreator creator_;
GradOpMakerFN grad_op_maker_;
OpProto* proto_{nullptr};
OpAttrChecker* checker_{nullptr};
InferVarTypeFN infer_var_type_;
InferShapeFN infer_shape_;
bool HasOpProtoAndChecker() const {
return proto_ != nullptr && checker_ != nullptr;
@ -87,13 +94,13 @@ class OpInfoMap {
}
}
const std::unordered_map<std::string, const OpInfo>& map() const {
return map_;
}
const std::unordered_map<std::string, OpInfo>& map() const { return map_; }
std::unordered_map<std::string, OpInfo>* mutable_map() { return &map_; }
private:
OpInfoMap() = default;
std::unordered_map<std::string, const OpInfo> map_;
std::unordered_map<std::string, OpInfo> map_;
DISABLE_COPY_AND_ASSIGN(OpInfoMap);
};

@ -29,6 +29,7 @@ limitations under the License. */
#include "paddle/framework/op_desc.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/shape_inference.h"
namespace paddle {
namespace framework {
@ -161,6 +162,10 @@ class OpKernelRegistrar : public Registrar {
REGISTER_OPERATOR(op_type, op_class, _GradOpDescMaker_##grad_op_type##_, \
op_maker_class);
#define REGISTER_OP_WITH_KERNEL(op_type, ...) \
REGISTER_OPERATOR(op_type, ::paddle::framework::OperatorWithKernel, \
##__VA_ARGS__)
#define REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) \
REGISTER_OPERATOR(op_type, op_class, op_maker_class)
@ -223,6 +228,10 @@ class OpKernelRegistrar : public Registrar {
USE_OP_ITSELF(op_type); \
USE_OP_DEVICE_KERNEL(op_type, CPU);
#define USE_GPU_ONLY_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_DEVICE_KERNEL(op_type, GPU)
#define USE_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_KERNEL(op_type)

@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/framework/operator.h"
#include <algorithm>
#include <atomic>
#include "paddle/framework/shape_inference.h"
namespace paddle {
namespace framework {
@ -33,24 +34,6 @@ ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
}
#endif
const Tensor* GetTensorFromVar(const Variable* var) {
if (var->IsType<LoDTensor>()) {
return &var->Get<LoDTensor>();
}
PADDLE_ENFORCE(var->IsType<Tensor>(),
"The Input must be LoDTensor or Tensor.");
return &var->Get<Tensor>();
}
Tensor* GetTensorFromVar(Variable* var) {
if (var->IsType<LoDTensor>()) {
return var->GetMutable<LoDTensor>();
}
PADDLE_ENFORCE(var->IsType<Tensor>(),
"The Input must be LoDTensor or Tensor.");
return var->GetMutable<Tensor>();
}
std::string OperatorBase::Input(const std::string& name) const {
auto& ins = Inputs(name);
PADDLE_ENFORCE_LE(ins.size(), 1UL,
@ -204,6 +187,30 @@ void OperatorBase::GenerateTemporaryNames() {
}
}
static const Tensor* GetTensorFromVar(const Variable* var) {
const Tensor* t = nullptr;
if (var->IsType<LoDTensor>()) {
t = &(var->Get<LoDTensor>());
} else if (var->IsType<SelectedRows>()) {
t = &(var->Get<SelectedRows>().value());
} else {
PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
}
return t;
}
static Tensor* GetMutableTensorFromVar(Variable* var) {
Tensor* t = nullptr;
if (var->IsType<LoDTensor>()) {
t = var->GetMutable<LoDTensor>();
} else if (var->IsType<SelectedRows>()) {
t = var->GetMutable<SelectedRows>()->mutable_value();
} else {
PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
}
return t;
}
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
auto* var = InputVar(name);
@ -227,7 +234,7 @@ const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
auto var = OutputVar(name);
return var == nullptr ? nullptr : var->GetMutable<LoDTensor>();
return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
}
template <>
@ -240,7 +247,7 @@ std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
[&](const std::string& sub_name) {
auto var = scope_.FindVar(sub_name);
return var == nullptr ? nullptr
: var->GetMutable<LoDTensor>();
: GetMutableTensorFromVar(var);
});
return res;
}
@ -267,5 +274,137 @@ bool OpSupportGPU(const std::string& op_type) {
return false;
}
class RuntimeInferShapeContext : public InferShapeContext {
public:
RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
: op_(op), scope_(scope) {}
bool HasInput(const std::string& name) const override {
auto& ins = Inputs(name);
size_t length = ins.size();
if (length == 0) {
return false;
}
PADDLE_ENFORCE_EQ(length, 1UL, "Input %s should have more than one inputs",
name);
auto ipt = ins[0];
auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
return var != nullptr;
}
bool HasOutput(const std::string& name) const override {
auto& outs = Outputs(name);
size_t length = outs.size();
if (length == 0) {
return false;
}
PADDLE_ENFORCE_EQ(length, 1UL, "Output %s should have more than one inputs",
name);
auto ipt = outs[0];
auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
return var != nullptr;
}
bool HasInputs(const std::string& name) const override {
auto inputs = op_.Inputs(name);
if (inputs.empty()) {
return false;
}
for (auto& input : inputs) {
if (scope_.FindVar(input) == nullptr) {
return false;
}
}
return true;
}
bool HasOutputs(const std::string& name) const override {
auto outputs = op_.Outputs(name);
if (outputs.empty()) {
return false;
}
for (auto& output : outputs) {
if (scope_.FindVar(output) == nullptr) {
return false;
}
}
return true;
}
DDim GetInputDim(const std::string& name) const override {
return GetDim(op_.Input(name));
}
void SetOutputDim(const std::string& name, const DDim& dim) override {
SetDim(op_.Output(name), dim);
}
AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }
const std::vector<std::string>& Inputs(
const std::string& name) const override {
return op_.Inputs(name);
}
const std::vector<std::string>& Outputs(
const std::string& name) const override {
return op_.Outputs(name);
}
private:
DDim GetDim(const std::string& name) const override {
Variable* var = scope_.FindVar(name);
if (var->IsType<LoDTensor>()) {
return var->Get<LoDTensor>().dims();
} else if (var->IsType<SelectedRows>()) {
return var->Get<SelectedRows>().GetCompleteDims();
} else {
PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
}
}
void SetDim(const std::string& name, const DDim& dim) override {
Variable* var = scope_.FindVar(name);
if (var->IsType<LoDTensor>()) {
var->GetMutable<LoDTensor>()->Resize(dim);
} else if (var->IsType<SelectedRows>()) {
var->GetMutable<SelectedRows>()->set_height(dim[0]);
} else {
PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
}
}
const OperatorBase& op_;
const Scope& scope_;
};
void OperatorWithKernel::Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const {
VLOG(3) << "Running operator " << this->Type();
RuntimeInferShapeContext infer_shape_ctx(*this, scope);
this->InferShape(&infer_shape_ctx);
ExecutionContext ctx(*this, scope, dev_ctx);
// check if op[type] has kernel registered.
auto& all_op_kernels = AllOpKernels();
auto kernels_iter = all_op_kernels.find(type_);
if (kernels_iter == all_op_kernels.end()) {
PADDLE_THROW(
"There are no kernels which are registered in the %s operator.", type_);
}
// check if op[type] have kernel for kernel_key
OpKernelMap& kernels = kernels_iter->second;
auto kernel_key = OpKernelKey(IndicateDataType(ctx), dev_ctx);
auto kernel_iter = kernels.find(kernel_key);
if (kernel_iter == kernels.end()) {
PADDLE_THROW("The operator %s does not support %s", type_, kernel_key);
}
kernel_iter->second->Compute(ctx);
}
} // namespace framework
} // namespace paddle

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save