fix conv3d_transpose_test timeout error (#25004)
* test=develop fix conv3d_transpose_test errorfix_copy_if_different
parent
bd0b38e671
commit
1f24c84a3f
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,215 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle.fluid.core as core
|
||||
import paddle.fluid as fluid
|
||||
from op_test import OpTest
|
||||
from test_conv3d_transpose_op import conv3dtranspose_forward_naive, TestConv3dTransposeOp
|
||||
|
||||
|
||||
class TestWithSymmetricPad_NHWC(TestConv3dTransposeOp):
|
||||
def init_test_case(self):
|
||||
self.pad = [1, 1, 1]
|
||||
self.stride = [1, 1, 1]
|
||||
self.dilations = [1, 1, 1]
|
||||
self.groups = 1
|
||||
self.input_size = [2, 5, 5, 5, 3] # NDHWC
|
||||
f_c = self.input_size[-1]
|
||||
self.filter_size = [f_c, 6, 3, 3, 3]
|
||||
self.data_format = 'NHWC'
|
||||
|
||||
|
||||
class TestWithAsymmetricPad_NHWC(TestConv3dTransposeOp):
|
||||
def init_test_case(self):
|
||||
self.pad = [1, 0, 1, 0, 1, 2]
|
||||
self.stride = [1, 1, 1]
|
||||
self.dilations = [1, 1, 1]
|
||||
self.groups = 1
|
||||
self.input_size = [2, 5, 5, 5, 3] # NDHWC
|
||||
f_c = self.input_size[-1]
|
||||
self.filter_size = [f_c, 6, 3, 3, 3]
|
||||
self.data_format = 'NHWC'
|
||||
|
||||
|
||||
class TestWithGroups_NHWC(TestConv3dTransposeOp):
|
||||
def init_test_case(self):
|
||||
self.check_no_filter = True
|
||||
self.pad = [1, 1, 1]
|
||||
self.stride = [1, 1, 1]
|
||||
self.dilations = [1, 1, 1]
|
||||
self.groups = 2
|
||||
self.input_size = [2, 5, 5, 5, 4] # NDHWC
|
||||
f_c = self.input_size[-1]
|
||||
self.filter_size = [f_c, 3, 3, 3, 3]
|
||||
self.data_format = 'NHWC'
|
||||
|
||||
|
||||
class TestWithStride_NHWC(TestConv3dTransposeOp):
|
||||
def init_test_case(self):
|
||||
self.pad = [1, 1, 1]
|
||||
self.stride = [2, 2, 2]
|
||||
self.dilations = [1, 1, 1]
|
||||
self.groups = 1
|
||||
self.input_size = [2, 5, 5, 5, 3] # NCDHW
|
||||
f_c = self.input_size[-1]
|
||||
self.filter_size = [f_c, 6, 3, 3, 3]
|
||||
self.data_format = 'NHWC'
|
||||
|
||||
|
||||
class TestWithDilation_NHWC(TestConv3dTransposeOp):
|
||||
def init_test_case(self):
|
||||
self.check_no_input = True
|
||||
self.pad = [1, 1, 1]
|
||||
self.stride = [1, 1, 1]
|
||||
self.dilations = [2, 2, 2]
|
||||
self.groups = 1
|
||||
self.input_size = [2, 5, 5, 5, 3] # NCDHW
|
||||
f_c = self.input_size[-1]
|
||||
self.filter_size = [f_c, 6, 3, 3, 3]
|
||||
self.data_format = 'NHWC'
|
||||
|
||||
|
||||
class TestConv3dTransposeAPI(unittest.TestCase):
|
||||
def test_case1(self):
|
||||
data1 = fluid.layers.data(
|
||||
name='data1', shape=[3, 5, 5, 5], dtype='float32')
|
||||
data2 = fluid.layers.data(
|
||||
name='data2', shape=[5, 5, 5, 3], dtype='float32')
|
||||
|
||||
out1 = fluid.layers.conv3d_transpose(
|
||||
input=data1,
|
||||
groups=1,
|
||||
num_filters=6,
|
||||
filter_size=3,
|
||||
data_format='NCDHW')
|
||||
out2 = fluid.layers.conv3d_transpose(
|
||||
input=data2,
|
||||
groups=1,
|
||||
num_filters=6,
|
||||
filter_size=3,
|
||||
data_format='NDHWC')
|
||||
out3 = fluid.layers.conv3d_transpose(
|
||||
input=data1,
|
||||
groups=1,
|
||||
num_filters=6,
|
||||
filter_size=3,
|
||||
padding=[[0, 0], [0, 0], [1, 1], [0, 0], [1, 1]],
|
||||
data_format='NCDHW')
|
||||
out4 = fluid.layers.conv3d_transpose(
|
||||
input=data2,
|
||||
groups=3,
|
||||
num_filters=6,
|
||||
filter_size=3,
|
||||
padding=[[0, 0], [0, 0], [1, 1], [1, 2], [0, 0]],
|
||||
data_format='NDHWC')
|
||||
out5 = fluid.layers.conv3d_transpose(
|
||||
input=data2,
|
||||
groups=1,
|
||||
num_filters=6,
|
||||
filter_size=3,
|
||||
padding='SAME',
|
||||
data_format='NCDHW')
|
||||
out6 = fluid.layers.conv3d_transpose(
|
||||
input=data2,
|
||||
groups=1,
|
||||
num_filters=6,
|
||||
filter_size=3,
|
||||
padding='VALID',
|
||||
data_format='NDHWC')
|
||||
out7 = fluid.layers.conv3d_transpose(
|
||||
input=data2,
|
||||
groups=1,
|
||||
num_filters=6,
|
||||
output_size=[7, 7, 7],
|
||||
padding=[0, 0, 0],
|
||||
data_format='NDHWC')
|
||||
|
||||
data1_np = np.random.random((2, 3, 5, 5, 5)).astype("float32")
|
||||
data2_np = np.random.random((2, 5, 5, 5, 3)).astype("float32")
|
||||
|
||||
if core.is_compiled_with_cuda():
|
||||
place = core.CUDAPlace(0)
|
||||
else:
|
||||
place = core.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(fluid.default_startup_program())
|
||||
results = exe.run(
|
||||
fluid.default_main_program(),
|
||||
feed={"data1": data1_np,
|
||||
"data2": data2_np},
|
||||
fetch_list=[out1, out2, out3, out4, out5, out6, out7],
|
||||
return_numpy=True)
|
||||
self.assertIsNotNone(results[0])
|
||||
self.assertIsNotNone(results[1])
|
||||
self.assertIsNotNone(results[2])
|
||||
self.assertIsNotNone(results[3])
|
||||
self.assertIsNotNone(results[4])
|
||||
self.assertIsNotNone(results[5])
|
||||
self.assertIsNotNone(results[6])
|
||||
|
||||
|
||||
class TestConv3dTransposeOpException(unittest.TestCase):
|
||||
def test_exception(self):
|
||||
data = fluid.layers.data(
|
||||
name='data', shape=[3, 5, 5, 5], dtype="float32")
|
||||
|
||||
def attr_data_format():
|
||||
out = fluid.layers.conv2d_transpose(
|
||||
input=data,
|
||||
groups=1,
|
||||
num_filters=6,
|
||||
filter_size=3,
|
||||
data_format="NCDW")
|
||||
|
||||
self.assertRaises(ValueError, attr_data_format)
|
||||
|
||||
def attr_padding_str():
|
||||
out = fluid.layers.conv2d_transpose(
|
||||
input=data,
|
||||
groups=1,
|
||||
num_filters=6,
|
||||
filter_size=3,
|
||||
padding='Vald')
|
||||
|
||||
self.assertRaises(ValueError, attr_padding_str)
|
||||
|
||||
def attr_padding_list():
|
||||
out = fluid.layers.conv2d_transpose(
|
||||
input=data,
|
||||
groups=1,
|
||||
num_filters=6,
|
||||
filter_size=3,
|
||||
padding=[[1, 1], [1, 1], [0, 0], [0, 0], [1, 1]])
|
||||
|
||||
self.assertRaises(ValueError, attr_padding_list)
|
||||
|
||||
def attr_padding_with_data_format():
|
||||
out = fluid.layers.conv2d_transpose(
|
||||
input=data,
|
||||
groups=1,
|
||||
num_filters=6,
|
||||
filter_size=3,
|
||||
padding=[[1, 1], [0, 0], [0, 0], [1, 0], [1, 1]],
|
||||
data_format='NDHWC')
|
||||
|
||||
self.assertRaises(ValueError, attr_padding_with_data_format)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue