parent
29d9fb53fc
commit
208f912512
@ -0,0 +1,217 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/concat_op.h"
|
||||
#include "paddle/fluid/platform/mkldnn_helper.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::DataLayout;
|
||||
using framework::Tensor;
|
||||
using mkldnn::memory;
|
||||
using mkldnn::primitive;
|
||||
using mkldnn::concat;
|
||||
using mkldnn::stream;
|
||||
using platform::to_void_cast;
|
||||
|
||||
// Generate keys for storing/retriving primitives for this operator
|
||||
// TODO(jczaja): Make hashing function more optimial
|
||||
static std::string gethash(const memory::dims& input_dims,
|
||||
const std::string& pooling_type,
|
||||
const std::vector<int>& ksize,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& paddings,
|
||||
const std::string& suffix) {
|
||||
auto dims2str = [](const memory::dims& operand_dims) {
|
||||
std::string dstr = "";
|
||||
for (size_t i = 0; i < operand_dims.size(); ++i) {
|
||||
dstr += std::to_string(operand_dims[i]) + "-";
|
||||
}
|
||||
return dstr;
|
||||
};
|
||||
return dims2str(input_dims) + dims2str(ksize) + dims2str(strides) +
|
||||
dims2str(paddings) + pooling_type + suffix;
|
||||
}
|
||||
|
||||
static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
|
||||
for (auto* input : inputs) {
|
||||
const bool is_layout_correct = input->layout() == DataLayout::kMKLDNN;
|
||||
const bool is_format_defined = input->format() !=
|
||||
memory::format::format_undef;
|
||||
PADDLE_ENFORCE(is_layout_correct && is_format_defined,
|
||||
"Wrong layout/format set for Input tensor");
|
||||
}
|
||||
}
|
||||
|
||||
static memory::primitive_desc CreateMemPrimDesc(
|
||||
const framework::Tensor& input, const mkldnn::engine& engine) {
|
||||
constexpr auto data_type = mkldnn::memory::f32;
|
||||
const auto dims = paddle::framework::vectorize2int(input.dims());
|
||||
const auto format = input.format();
|
||||
auto description = memory::desc(dims, data_type, format);
|
||||
auto mem_prim_desc = memory::primitive_desc(description, engine);
|
||||
return mem_prim_desc;
|
||||
}
|
||||
|
||||
static platform::CPUPlace GetCpuPlace(
|
||||
const paddle::framework::ExecutionContext& ctx) {
|
||||
auto place = ctx.GetPlace();
|
||||
PADDLE_ENFORCE(paddle::platform::is_cpu_place(place),
|
||||
"It must use CPUPlace.");
|
||||
return boost::get<platform::CPUPlace>(place);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
||||
auto place = GetCpuPlace(ctx);
|
||||
auto& dev_ctx =
|
||||
ctx.template device_context<platform::MKLDNNDeviceContext>();
|
||||
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
||||
|
||||
auto multi_input = ctx.MultiInput<framework::Tensor>("X");
|
||||
framework::Tensor* output = ctx.Output<framework::Tensor>("Out");
|
||||
int64_t concat_axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
|
||||
|
||||
EnforceLayouts(multi_input);
|
||||
|
||||
std::vector<memory::primitive_desc> srcs_pd;
|
||||
std::vector<memory> srcs;
|
||||
for (size_t i = 0; i < multi_input.size(); i++) {
|
||||
auto mem_prim_desc = CreateMemPrimDesc(*multi_input[i], mkldnn_engine);
|
||||
srcs_pd.push_back(mem_prim_desc);
|
||||
srcs.push_back(memory(mem_prim_desc, to_void_cast(multi_input[i]->data<T>())));
|
||||
}
|
||||
auto dst_dims = paddle::framework::vectorize2int(output->dims());
|
||||
auto dst_desc = memory::desc(dst_dims, mkldnn::memory::f32, memory::format::any);
|
||||
auto concat_pd = concat::primitive_desc(dst_desc, static_cast<int>(concat_axis), srcs_pd);
|
||||
auto dst_mem = memory(concat_pd.dst_primitive_desc(), output->mutable_data<T>(place));
|
||||
|
||||
std::vector<primitive::at> inputs; //= {srcs};
|
||||
inputs.reserve(srcs.size());
|
||||
for (size_t i = 0; i < srcs.size(); i++) {
|
||||
inputs.push_back(srcs[i]);
|
||||
}
|
||||
auto concat_prim = concat(concat_pd, inputs, dst_mem);
|
||||
|
||||
std::vector<primitive> pipeline;
|
||||
pipeline.push_back(concat_prim);
|
||||
stream(stream::kind::eager).submit(pipeline).wait(); // TODO(mgallus): When this is not workin' split into decl and def
|
||||
|
||||
/*
|
||||
const T* input_data = input->data<T>();
|
||||
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
||||
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
||||
|
||||
auto input_format = input->format();
|
||||
memory::format output_format{memory::format::format_undef};
|
||||
|
||||
const std::string key = gethash(src_tz, pooling_type, ksize, strides,
|
||||
paddings, ctx.op().Output("Out"));
|
||||
const std::string key_pool_p = key + "@pool_p";
|
||||
const std::string key_pool_pd = key + "@pool_pd";
|
||||
const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
|
||||
const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
|
||||
const std::string key_pool_workspace_memory =
|
||||
key + "@pool_workspace_memory";
|
||||
|
||||
auto pool_p =
|
||||
std::static_pointer_cast<pooling_forward>(dev_ctx.GetBlob(key_pool_p));
|
||||
if (pool_p == nullptr) {
|
||||
const std::vector<int>& padding_left_top(paddings);
|
||||
std::vector<int> padding_right_bottom(paddings);
|
||||
bool ceil_mode = ctx.Attr<bool>("ceil_mode");
|
||||
if (ceil_mode) {
|
||||
CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
|
||||
padding_right_bottom);
|
||||
}
|
||||
auto src_md = platform::MKLDNNMemDesc(
|
||||
src_tz, platform::MKLDNNGetDataType<T>(), input_format);
|
||||
|
||||
auto dst_md = platform::MKLDNNMemDesc(dst_tz, mkldnn::memory::f32,
|
||||
mkldnn::memory::format::any);
|
||||
|
||||
std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd =
|
||||
CreatePrimitiveDesc(src_md, dst_md, strides, padding_left_top,
|
||||
padding_right_bottom, ksize, pooling_type,
|
||||
mkldnn_engine, ceil_mode, is_test);
|
||||
|
||||
// save pool_pd into global device context to be referred in backward path
|
||||
if (!is_test) dev_ctx.SetBlob(key_pool_pd, pool_pd);
|
||||
|
||||
auto src_memory = std::make_shared<memory>(pool_pd->src_primitive_desc(),
|
||||
to_void_cast<T>(input_data));
|
||||
auto dst_memory =
|
||||
std::make_shared<memory>(pool_pd->dst_primitive_desc(), output_data);
|
||||
|
||||
dev_ctx.SetBlob(key_pool_src_mem_p, src_memory);
|
||||
dev_ctx.SetBlob(key_pool_dst_mem_p, dst_memory);
|
||||
|
||||
if (is_test) {
|
||||
pool_p = std::make_shared<pooling_forward>(*pool_pd, *src_memory,
|
||||
*dst_memory);
|
||||
} else {
|
||||
std::shared_ptr<mkldnn::memory> workspace_memory =
|
||||
CreateWorkspaceMemory(pool_pd, pooling_type, mkldnn_engine);
|
||||
|
||||
// save pool_workspace_memory to be referred in backward path
|
||||
dev_ctx.SetBlob(key_pool_workspace_memory, workspace_memory);
|
||||
|
||||
pool_p = std::make_shared<pooling_forward>(
|
||||
*pool_pd, *src_memory, *dst_memory, *workspace_memory);
|
||||
}
|
||||
|
||||
dev_ctx.SetBlob(key_pool_p, pool_p);
|
||||
|
||||
output_format =
|
||||
(memory::format)dst_memory->get_primitive_desc().desc().data.format;
|
||||
} else {
|
||||
// Primitives already exist
|
||||
auto pool_src_memory_p =
|
||||
std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
|
||||
PADDLE_ENFORCE(pool_src_memory_p != nullptr,
|
||||
"Fail to find pooling src mem_p in device context");
|
||||
auto pool_dst_memory_p =
|
||||
std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
|
||||
PADDLE_ENFORCE(pool_dst_memory_p != nullptr,
|
||||
"Fail to find pooling dst mem_p in device context");
|
||||
pool_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
|
||||
pool_dst_memory_p->set_data_handle(output_data);
|
||||
|
||||
output_format = (memory::format)pool_dst_memory_p->get_primitive_desc()
|
||||
.desc()
|
||||
.data.format;
|
||||
}
|
||||
|
||||
// push primitive to stream and wait until it's executed
|
||||
std::vector<mkldnn::primitive> pipeline{*(pool_p.get())};
|
||||
stream(stream::kind::eager).submit(pipeline).wait();
|
||||
*/
|
||||
output->mutable_data(place);
|
||||
output->set_layout(DataLayout::kMKLDNN);
|
||||
output->set_format((memory::format)dst_mem.get_primitive_desc().desc()
|
||||
.data.format);
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
|
||||
ops::ConcatMKLDNNOpKernel<float>)
|
@ -0,0 +1,56 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
from test_concat_op import TestConcatOp, TestConcatOp2, TestConcatOp3
|
||||
|
||||
|
||||
class TestMKLDNNConcatOp(TestConcatOp):
|
||||
def setUp(self):
|
||||
super(TestMKLDNNConcatOp, self).setUp()
|
||||
self.attrs["use_mkldnn"] = True
|
||||
|
||||
def test_check_grad(self):
|
||||
pass
|
||||
|
||||
def init_kernel_type(self):
|
||||
self.use_mkldnn = True
|
||||
|
||||
class TestMKLDNNConcatOp2(TestConcatOp2):
|
||||
def setUp(self):
|
||||
super(TestMKLDNNConcatOp2, self).setUp()
|
||||
self.attrs["use_mkldnn"] = True
|
||||
|
||||
def test_check_grad(self):
|
||||
pass
|
||||
|
||||
def init_kernel_type(self):
|
||||
self.use_mkldnn = True
|
||||
|
||||
class TestMKLDNNConcatOp3(TestConcatOp3):
|
||||
def setUp(self):
|
||||
super(TestMKLDNNConcatOp3, self).setUp()
|
||||
self.attrs["use_mkldnn"] = True
|
||||
|
||||
def test_check_grad(self):
|
||||
pass
|
||||
|
||||
def init_kernel_type(self):
|
||||
self.use_mkldnn = True
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue