Support load state dict form `inference model` format save result (#26718)
* support load infer model format state dict * add unittests * remove keep name table * recolve circle inport * fix compatible problem * recover unittest * polish doc and commentrevert-26856-strategy_example2
parent
bcdbac1753
commit
209273e605
@ -0,0 +1,165 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import six
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import core
|
||||
from test_imperative_base import new_program_scope
|
||||
|
||||
|
||||
def convolutional_neural_network(img):
|
||||
conv_pool_1 = fluid.nets.simple_img_conv_pool(
|
||||
input=img,
|
||||
filter_size=5,
|
||||
num_filters=20,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
act="relu")
|
||||
conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
|
||||
conv_pool_2 = fluid.nets.simple_img_conv_pool(
|
||||
input=conv_pool_1,
|
||||
filter_size=5,
|
||||
num_filters=50,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
act="relu")
|
||||
prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
|
||||
return prediction
|
||||
|
||||
|
||||
def static_train_net(img, label):
|
||||
prediction = convolutional_neural_network(img)
|
||||
|
||||
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
avg_loss = fluid.layers.mean(loss)
|
||||
|
||||
optimizer = fluid.optimizer.SGD(learning_rate=0.001)
|
||||
optimizer.minimize(avg_loss)
|
||||
|
||||
return prediction, avg_loss
|
||||
|
||||
|
||||
class TestLoadStateDictFromSaveInferenceModel(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.seed = 90
|
||||
self.epoch_num = 1
|
||||
self.batch_size = 128
|
||||
self.batch_num = 10
|
||||
|
||||
def train_and_save_model(self):
|
||||
with new_program_scope():
|
||||
startup_program = fluid.default_startup_program()
|
||||
main_program = fluid.default_main_program()
|
||||
|
||||
img = fluid.data(
|
||||
name='img', shape=[None, 1, 28, 28], dtype='float32')
|
||||
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
|
||||
|
||||
prediction, avg_loss = static_train_net(img, label)
|
||||
|
||||
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
||||
) else fluid.CPUPlace()
|
||||
|
||||
exe = fluid.Executor(place)
|
||||
|
||||
feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
|
||||
exe.run(startup_program)
|
||||
|
||||
train_reader = paddle.batch(
|
||||
paddle.reader.shuffle(
|
||||
paddle.dataset.mnist.train(), buf_size=100),
|
||||
batch_size=self.batch_size)
|
||||
|
||||
for _ in range(0, self.epoch_num):
|
||||
for batch_id, data in enumerate(train_reader()):
|
||||
exe.run(main_program,
|
||||
feed=feeder.feed(data),
|
||||
fetch_list=[avg_loss])
|
||||
|
||||
if batch_id > self.batch_num:
|
||||
break
|
||||
|
||||
static_param_dict = {}
|
||||
for param in fluid.default_main_program().all_parameters():
|
||||
static_param_dict[param.name] = fluid.executor._fetch_var(
|
||||
param.name)
|
||||
|
||||
fluid.io.save_inference_model(
|
||||
self.save_dirname, ["img"], [prediction],
|
||||
exe,
|
||||
model_filename=self.model_filename,
|
||||
params_filename=self.params_filename)
|
||||
|
||||
return static_param_dict
|
||||
|
||||
def check_load_state_dict(self, orig_dict, load_dict):
|
||||
for var_name, value in six.iteritems(orig_dict):
|
||||
self.assertTrue(np.array_equal(value, load_dict[var_name]))
|
||||
|
||||
def test_load_default(self):
|
||||
self.save_dirname = "static_mnist.load_state_dict.default"
|
||||
self.model_filename = None
|
||||
self.params_filename = None
|
||||
orig_param_dict = self.train_and_save_model()
|
||||
|
||||
configs = paddle.SaveLoadConfig()
|
||||
configs.separate_params = True
|
||||
load_param_dict, _ = paddle.load(self.save_dirname, configs)
|
||||
self.check_load_state_dict(orig_param_dict, load_param_dict)
|
||||
|
||||
def test_load_with_model_filename(self):
|
||||
self.save_dirname = "static_mnist.load_state_dict.model_filename"
|
||||
self.model_filename = "static_mnist.model"
|
||||
self.params_filename = None
|
||||
orig_param_dict = self.train_and_save_model()
|
||||
|
||||
configs = paddle.SaveLoadConfig()
|
||||
configs.separate_params = True
|
||||
configs.model_filename = self.model_filename
|
||||
load_param_dict, _ = paddle.load(self.save_dirname, configs)
|
||||
self.check_load_state_dict(orig_param_dict, load_param_dict)
|
||||
|
||||
def test_load_with_param_filename(self):
|
||||
self.save_dirname = "static_mnist.load_state_dict.param_filename"
|
||||
self.model_filename = None
|
||||
self.params_filename = "static_mnist.params"
|
||||
orig_param_dict = self.train_and_save_model()
|
||||
|
||||
configs = paddle.SaveLoadConfig()
|
||||
configs.params_filename = self.params_filename
|
||||
load_param_dict, _ = paddle.load(self.save_dirname, configs)
|
||||
self.check_load_state_dict(orig_param_dict, load_param_dict)
|
||||
|
||||
def test_load_with_model_and_param_filename(self):
|
||||
self.save_dirname = "static_mnist.load_state_dict.model_and_param_filename"
|
||||
self.model_filename = "static_mnist.model"
|
||||
self.params_filename = "static_mnist.params"
|
||||
orig_param_dict = self.train_and_save_model()
|
||||
|
||||
configs = paddle.SaveLoadConfig()
|
||||
configs.params_filename = self.params_filename
|
||||
configs.model_filename = self.model_filename
|
||||
load_param_dict, _ = paddle.load(self.save_dirname, configs)
|
||||
self.check_load_state_dict(orig_param_dict, load_param_dict)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue