|
|
|
@ -45,8 +45,9 @@ BATCH_SIZE = 64
|
|
|
|
|
def loss_net(hidden, label):
|
|
|
|
|
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
|
|
|
|
|
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
|
|
|
return fluid.layers.mean(x=loss), fluid.layers.accuracy(
|
|
|
|
|
input=prediction, label=label)
|
|
|
|
|
avg_loss = fluid.layers.mean(x=loss)
|
|
|
|
|
acc = fluid.layers.accuracy(input=prediction, label=label)
|
|
|
|
|
return prediction, avg_loss, acc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mlp(img, label):
|
|
|
|
@ -73,8 +74,7 @@ def conv_net(img, label):
|
|
|
|
|
return loss_net(conv_pool_2, label)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
args = parse_arg()
|
|
|
|
|
def train(args, save_dirname=None):
|
|
|
|
|
print("recognize digits with args: {0}".format(" ".join(sys.argv[1:])))
|
|
|
|
|
|
|
|
|
|
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
|
|
|
|
@ -91,7 +91,8 @@ def main():
|
|
|
|
|
with pd.do():
|
|
|
|
|
img_ = pd.read_input(img)
|
|
|
|
|
label_ = pd.read_input(label)
|
|
|
|
|
for o in net_conf(img_, label_):
|
|
|
|
|
prediction, avg_loss, acc = net_conf(img_, label_)
|
|
|
|
|
for o in [avg_loss, acc]:
|
|
|
|
|
pd.write_output(o)
|
|
|
|
|
|
|
|
|
|
avg_loss, acc = pd()
|
|
|
|
@ -99,7 +100,7 @@ def main():
|
|
|
|
|
avg_loss = fluid.layers.mean(x=avg_loss)
|
|
|
|
|
acc = fluid.layers.mean(x=acc)
|
|
|
|
|
else:
|
|
|
|
|
avg_loss, acc = net_conf(img, label)
|
|
|
|
|
prediction, avg_loss, acc = net_conf(img, label)
|
|
|
|
|
|
|
|
|
|
test_program = fluid.default_main_program().clone()
|
|
|
|
|
|
|
|
|
@ -137,7 +138,10 @@ def main():
|
|
|
|
|
acc_val = numpy.array(acc_set).mean()
|
|
|
|
|
avg_loss_val = numpy.array(avg_loss_set).mean()
|
|
|
|
|
if float(acc_val) > 0.85: # test acc > 85%
|
|
|
|
|
exit(0)
|
|
|
|
|
if save_dirname is not None:
|
|
|
|
|
fluid.io.save_inference_model(save_dirname, ["img"],
|
|
|
|
|
[prediction], exe)
|
|
|
|
|
return
|
|
|
|
|
else:
|
|
|
|
|
print(
|
|
|
|
|
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
|
|
|
|
@ -145,5 +149,38 @@ def main():
|
|
|
|
|
float(avg_loss_val), float(acc_val)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def infer(args, save_dirname=None):
|
|
|
|
|
if save_dirname is None:
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
|
|
|
|
|
# Use fluid.io.load_inference_model to obtain the inference program desc,
|
|
|
|
|
# the feed_target_names (the names of variables that will be feeded
|
|
|
|
|
# data using feed operators), and the fetch_targets (variables that
|
|
|
|
|
# we want to obtain data from using fetch operators).
|
|
|
|
|
[inference_program, feed_target_names,
|
|
|
|
|
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
|
|
|
|
|
|
|
|
|
|
if args.nn_type == 'mlp':
|
|
|
|
|
tensor_img = numpy.random.rand(1, 28, 28).astype("float32")
|
|
|
|
|
else:
|
|
|
|
|
tensor_img = numpy.random.rand(1, 1, 28, 28).astype("float32")
|
|
|
|
|
|
|
|
|
|
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
|
|
|
|
|
# and results will contain a list of data corresponding to fetch_targets.
|
|
|
|
|
results = exe.run(inference_program,
|
|
|
|
|
feed={feed_target_names[0]: tensor_img},
|
|
|
|
|
fetch_list=fetch_targets)
|
|
|
|
|
print("infer results: ", results[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
main()
|
|
|
|
|
args = parse_arg()
|
|
|
|
|
if not args.use_cuda and not args.parallel:
|
|
|
|
|
save_dirname = "recognize_digits_" + args.nn_type + ".inference.model"
|
|
|
|
|
else:
|
|
|
|
|
save_dirname = None
|
|
|
|
|
train(args, save_dirname)
|
|
|
|
|
infer(args, save_dirname)
|
|
|
|
|