|
|
|
@ -61,8 +61,8 @@ class ParallelExecutor(object):
|
|
|
|
|
main_program=test_program,
|
|
|
|
|
share_vars_from=train_exe)
|
|
|
|
|
|
|
|
|
|
train_loss, = train_exe.run([loss.name], feed_dict=feed_dict)
|
|
|
|
|
test_loss, = test_exe.run([loss.name], feed_dict=feed_dict)
|
|
|
|
|
train_loss, = train_exe.run([loss.name], feed=feed_dict)
|
|
|
|
|
test_loss, = test_exe.run([loss.name], feed=feed_dict)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
self._places = []
|
|
|
|
@ -123,22 +123,23 @@ class ParallelExecutor(object):
|
|
|
|
|
allow_op_delay)
|
|
|
|
|
self.scope = scope
|
|
|
|
|
|
|
|
|
|
def run(self, fetch_list, feed_dict={}):
|
|
|
|
|
def run(self, fetch_list, feed={}, feed_dict={}):
|
|
|
|
|
"""
|
|
|
|
|
:param fetch_list: A list of variable names that will be fetched.
|
|
|
|
|
:param feed_dict: A dict mapping for feed variable name to LoDTensor
|
|
|
|
|
:param feed: A dict mapping for feed variable name to LoDTensor
|
|
|
|
|
or numpy array.
|
|
|
|
|
:return: fetched value list.
|
|
|
|
|
"""
|
|
|
|
|
if not isinstance(feed_dict, dict):
|
|
|
|
|
raise TypeError("feed_dict should be a dict")
|
|
|
|
|
feed = feed_dict
|
|
|
|
|
if not isinstance(feed, dict):
|
|
|
|
|
raise TypeError("feed should be a dict")
|
|
|
|
|
|
|
|
|
|
feed_tensor_dict = {}
|
|
|
|
|
for i, feed_name in enumerate(feed_dict):
|
|
|
|
|
feed_tensor = feed_dict[feed_name]
|
|
|
|
|
for i, feed_name in enumerate(feed):
|
|
|
|
|
feed_tensor = feed[feed_name]
|
|
|
|
|
if not isinstance(feed_tensor, core.LoDTensor):
|
|
|
|
|
feed_tensor = core.LoDTensor()
|
|
|
|
|
feed_tensor.set(feed_dict[feed_name], self._act_places[0])
|
|
|
|
|
feed_tensor.set(feed[feed_name], self._act_places[0])
|
|
|
|
|
feed_tensor_dict[feed_name] = feed_tensor
|
|
|
|
|
|
|
|
|
|
fetch_var_name = '@FETCHED_VAR_NAME@'
|
|
|
|
|