Design doc of SelectedRows (#4652)
* Design doc of SelectedRows * Follow comments * Update protobuf message * Follow comments, seperate LoDTensorDesc and SelectedRows Descrevert-4814-Add_sequence_project_op
parent
696874ac6e
commit
23407e7a64
@ -0,0 +1,74 @@
|
||||
# Design Doc: Selected Rows
|
||||
|
||||
`SelectedRows` is a kind of sparse tensor data type, which is designed to support `embedding` operators. The gradient of embedding table is a sparse tensor. Only a few rows are non-zero values in that tensor. It is straightforward to represent the sparse tensor by the following sparse tensor data structure:
|
||||
|
||||
```cpp
|
||||
class SelectedRows {
|
||||
private:
|
||||
vector<int> rows_;
|
||||
Tensor value_;
|
||||
int height_;
|
||||
};
|
||||
```
|
||||
|
||||
The field `height_` shows the first dimension of `SelectedRows`. The `rows` are the indices of which rows of `SelectedRows` are non-zeros. The `value_` field is an N-dim tensor and shape is `[rows.size() /* NUM_ROWS */, ...]`, which supplies values for each row. The dimension of `SelectedRows` satisfies `[height_] + value_.shape[1:]`.
|
||||
|
||||
Suppose that a SelectedRows-typed variable `x` has many rows, but only two of them have values -- row 73 is `[1, 2]` and row 84 is `[3, 4]`, the `SelectedRows` representation would be:
|
||||
|
||||
```
|
||||
x = SelectedRow {
|
||||
rows = [73, 84],
|
||||
value = [[1, 2], [3,4]]
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## SelectedRows in Protobuf
|
||||
|
||||
`SelectedRows` is a kind of `Variable`. `VarDesc` in protobuf should describe the `SelectedRows` information. Only the tensor dimension of a `SelectedRows` will be described in compile-time since the `rows_` and `value_` are related to training data.
|
||||
So we use `TensorDesc` to unify `data_type` and `dims`. A LodTensorDesc contains a `TensorDesc` and `lod_level`. The description of `SelectedRows` is a Tensor description.
|
||||
|
||||
```proto
|
||||
message TensorDesc {
|
||||
required DataType data_type = 1;
|
||||
repeated int64 dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480]
|
||||
}
|
||||
|
||||
message LodTensorDesc {
|
||||
required TensorDesc tensor = 1;
|
||||
optional int lod_level = 2;
|
||||
}
|
||||
|
||||
message VarDesc {
|
||||
required string name = 1;
|
||||
enum VarType {
|
||||
LOD_TENSOR = 0;
|
||||
SELECTED_ROWS = 1;
|
||||
}
|
||||
required VarType type = 2;
|
||||
optional LodTensorDesc lod_desc = 3;
|
||||
optional TensorDesc selected_rows_desc = 4;
|
||||
optional bool persistable = 5 [ default = false ];
|
||||
}
|
||||
```
|
||||
|
||||
## InferShape for Selected Rows
|
||||
|
||||
Just like `LoD` information, `InferShape` method will inference output tensor type as well. The operator should decide whether its output is a `SelectedRows` or `Dense` tensor.
|
||||
|
||||
For example, the gradient operator of `TableLookup` will always generate `SelectedRows`. Its `InferShape` method should be like following
|
||||
|
||||
```cpp
|
||||
void TableLookupGrad::InferShape(context) {
|
||||
...
|
||||
context.SetDataType("Embedding.Grad", kSelectedRows);
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## Sparse Operators
|
||||
|
||||
There are several operators should be written to support `SelectedRows`. They are:
|
||||
|
||||
1. Operators which generates `SelectedRows` gradient. e.g. Gradient of `TableLookupOp`.
|
||||
2. Optimize operators which support `SelectedRows` gradient. e.g. `SGD` or `AdaGrad` for `SelectedRows`. However, there should be only one `SGD` operator. `OpWithKernel::Run` should select a suitable kernel for both `dense` tensor or `SelectedRows`.
|
Loading…
Reference in new issue