|
|
|
@ -82,19 +82,16 @@ class GemmConvKernel : public framework::OpKernel {
|
|
|
|
|
int in_step = input_channels / groups;
|
|
|
|
|
int out_step = output_channels / groups;
|
|
|
|
|
for (int i = 0; i < batch_size; i++) {
|
|
|
|
|
Tensor in_slice_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
|
|
|
|
|
Tensor out_slice_batch =
|
|
|
|
|
output->Slice<T>(i, i + 1).Resize(output_matrix_shape);
|
|
|
|
|
Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
|
|
|
|
|
Tensor out_batch = output->Slice<T>(i, i + 1).Resize(output_matrix_shape);
|
|
|
|
|
for (int g = 0; g < groups; g++) {
|
|
|
|
|
// im2col
|
|
|
|
|
Tensor in_slice =
|
|
|
|
|
in_slice_batch.Slice<T>(g * in_step, (g + 1) * in_step);
|
|
|
|
|
Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
|
|
|
|
|
im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
|
|
|
|
|
device_context);
|
|
|
|
|
|
|
|
|
|
// gemm
|
|
|
|
|
Tensor out_slice =
|
|
|
|
|
out_slice_batch.Slice<T>(g * out_step, (g + 1) * out_step);
|
|
|
|
|
Tensor out_slice = out_batch.Slice<T>(g * out_step, (g + 1) * out_step);
|
|
|
|
|
Tensor filter_slice = filter.Slice<T>(g * out_step, (g + 1) * out_step);
|
|
|
|
|
math::matmul<Place, T>(filter_slice, false, col_matrix, false, T(1.0),
|
|
|
|
|
&out_slice, T(0.0), device_context);
|
|
|
|
@ -125,12 +122,13 @@ class GemmConvGradKernel : public framework::OpKernel {
|
|
|
|
|
|
|
|
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
|
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
|
|
|
// int groups = context.Attr<int>("groups");
|
|
|
|
|
int groups = context.Attr<int>("groups");
|
|
|
|
|
|
|
|
|
|
int batch_size = input->dims()[0];
|
|
|
|
|
int input_channels = input->dims()[1];
|
|
|
|
|
int filter_height = filter.dims()[filter.dims().size() - 2];
|
|
|
|
|
int filter_width = filter.dims()[filter.dims().size() - 1];
|
|
|
|
|
int output_channels = output_grad->dims()[1];
|
|
|
|
|
int output_height = output_grad->dims()[2];
|
|
|
|
|
int output_width = output_grad->dims()[3];
|
|
|
|
|
|
|
|
|
@ -141,11 +139,11 @@ class GemmConvGradKernel : public framework::OpKernel {
|
|
|
|
|
paddle::operators::math::ColFormat::kCFO, Place, T>
|
|
|
|
|
im2col;
|
|
|
|
|
// use col_shape in the im2col and col2im calculation
|
|
|
|
|
framework::DDim col_shape = {input_channels, filter_height, filter_width,
|
|
|
|
|
output_height, output_width};
|
|
|
|
|
framework::DDim col_shape = {input_channels / groups, filter_height,
|
|
|
|
|
filter_width, output_height, output_width};
|
|
|
|
|
// use col_matrix_shape in the gemm calculation
|
|
|
|
|
framework::DDim col_matrix_shape = {
|
|
|
|
|
input_channels * filter_height * filter_width,
|
|
|
|
|
input_channels / groups * filter_height * filter_width,
|
|
|
|
|
output_height * output_width};
|
|
|
|
|
Tensor col;
|
|
|
|
|
col.mutable_data<T>(col_shape, context.GetPlace());
|
|
|
|
@ -176,26 +174,38 @@ class GemmConvGradKernel : public framework::OpKernel {
|
|
|
|
|
|
|
|
|
|
// convolution backward input operator: gemm + col2im
|
|
|
|
|
// convolution backward weight operator: im2col + gemm
|
|
|
|
|
int in_step = input_channels / groups;
|
|
|
|
|
int out_step = output_channels / groups;
|
|
|
|
|
for (int i = 0; i < batch_size; i++) {
|
|
|
|
|
// gemm
|
|
|
|
|
Tensor out_slice =
|
|
|
|
|
Tensor out_grad_batch =
|
|
|
|
|
output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
|
|
|
|
|
math::matmul<Place, T>(filter, true, out_slice, false, T(1.0),
|
|
|
|
|
&col_matrix, T(0.0), device_context);
|
|
|
|
|
|
|
|
|
|
// col2im
|
|
|
|
|
Tensor in_grad_slice = input_grad->Slice<T>(i, i + 1).Resize(input_shape);
|
|
|
|
|
col2im(in_grad_slice, col, strides[0], strides[1], paddings[0],
|
|
|
|
|
paddings[1], device_context);
|
|
|
|
|
|
|
|
|
|
// im2col
|
|
|
|
|
Tensor in_slice = input->Slice<T>(i, i + 1).Resize(input_shape);
|
|
|
|
|
im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
|
|
|
|
|
device_context);
|
|
|
|
|
|
|
|
|
|
// gemm
|
|
|
|
|
math::matmul<Place, T>(out_slice, false, col_matrix, true, T(1.0),
|
|
|
|
|
&filter_grad, T(1.0), device_context);
|
|
|
|
|
Tensor in_grad_batch = input_grad->Slice<T>(i, i + 1).Resize(input_shape);
|
|
|
|
|
Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
|
|
|
|
|
for (int g = 0; g < groups; g++) {
|
|
|
|
|
// gemm
|
|
|
|
|
Tensor out_grad_slice =
|
|
|
|
|
out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
|
|
|
|
|
Tensor filter_slice = filter.Slice<T>(g * out_step, (g + 1) * out_step);
|
|
|
|
|
math::matmul<Place, T>(filter_slice, true, out_grad_slice, false,
|
|
|
|
|
T(1.0), &col_matrix, T(0.0), device_context);
|
|
|
|
|
|
|
|
|
|
// col2im
|
|
|
|
|
Tensor in_grad_slice =
|
|
|
|
|
in_grad_batch.Slice<T>(g * in_step, (g + 1) * in_step);
|
|
|
|
|
col2im(in_grad_slice, col, strides[0], strides[1], paddings[0],
|
|
|
|
|
paddings[1], device_context);
|
|
|
|
|
|
|
|
|
|
// im2col
|
|
|
|
|
Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
|
|
|
|
|
im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
|
|
|
|
|
device_context);
|
|
|
|
|
|
|
|
|
|
// gemm
|
|
|
|
|
Tensor filter_grad_slice =
|
|
|
|
|
filter_grad.Slice<T>(g * out_step, (g + 1) * out_step);
|
|
|
|
|
math::matmul<Place, T>(out_grad_slice, false, col_matrix, true, T(1.0),
|
|
|
|
|
&filter_grad_slice, T(1.0), device_context);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|