[API 2.0] adaptive expand op to use shape instead of expand_times (#26206)
* adaptive expand op to 2.0 (align to torch.expand) , test=developrevert-24895-update_cub
parent
cbf8ba1591
commit
241b44db14
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,32 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
#include "paddle/fluid/operators/expand_v2_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
namespace plat = paddle::platform;
|
||||
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
expand_v2, ops::ExpandV2Kernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::ExpandV2Kernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::ExpandV2Kernel<paddle::platform::CUDADeviceContext, plat::float16>,
|
||||
ops::ExpandV2Kernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::ExpandV2Kernel<paddle::platform::CUDADeviceContext, int64_t>,
|
||||
ops::ExpandV2Kernel<paddle::platform::CUDADeviceContext, bool>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
expand_v2_grad,
|
||||
ops::ExpandV2GradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::ExpandV2GradKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::ExpandV2GradKernel<paddle::platform::CUDADeviceContext, plat::float16>,
|
||||
ops::ExpandV2GradKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::ExpandV2GradKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,234 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import compiler, Program, program_guard
|
||||
import paddle
|
||||
|
||||
|
||||
# Situation 1: shape is a list(without tensor)
|
||||
class TestExpandV2OpRank1(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand_v2"
|
||||
self.init_data()
|
||||
|
||||
self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
|
||||
self.attrs = {'shape': self.shape}
|
||||
output = np.tile(self.inputs['X'], self.expand_times)
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def init_data(self):
|
||||
self.ori_shape = [100]
|
||||
self.shape = [100]
|
||||
self.expand_times = [1]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestExpandV2OpRank2_DimExpanding(TestExpandV2OpRank1):
|
||||
def init_data(self):
|
||||
self.ori_shape = [120]
|
||||
self.shape = [2, 120]
|
||||
self.expand_times = [2, 1]
|
||||
|
||||
|
||||
class TestExpandV2OpRank2(TestExpandV2OpRank1):
|
||||
def init_data(self):
|
||||
self.ori_shape = [1, 140]
|
||||
self.shape = [12, 140]
|
||||
self.expand_times = [12, 1]
|
||||
|
||||
|
||||
class TestExpandV2OpRank3_Corner(TestExpandV2OpRank1):
|
||||
def init_data(self):
|
||||
self.ori_shape = (2, 10, 5)
|
||||
self.shape = (2, 10, 5)
|
||||
self.expand_times = (1, 1, 1)
|
||||
|
||||
|
||||
class TestExpandV2OpRank4(TestExpandV2OpRank1):
|
||||
def init_data(self):
|
||||
self.ori_shape = (2, 4, 5, 7)
|
||||
self.shape = (-1, -1, -1, -1)
|
||||
self.expand_times = (1, 1, 1, 1)
|
||||
|
||||
|
||||
# Situation 2: shape is a list(with tensor)
|
||||
class TestExpandV2OpRank1_tensor_attr(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand_v2"
|
||||
self.init_data()
|
||||
expand_shapes_tensor = []
|
||||
for index, ele in enumerate(self.expand_shape):
|
||||
expand_shapes_tensor.append(("x" + str(index), np.ones(
|
||||
(1)).astype('int32') * ele))
|
||||
|
||||
self.inputs = {
|
||||
'X': np.random.random(self.ori_shape).astype("float64"),
|
||||
'expand_shapes_tensor': expand_shapes_tensor,
|
||||
}
|
||||
self.attrs = {"shape": self.infer_expand_shape}
|
||||
output = np.tile(self.inputs['X'], self.expand_times)
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def init_data(self):
|
||||
self.ori_shape = [100]
|
||||
self.expand_times = [1]
|
||||
self.expand_shape = [100]
|
||||
self.infer_expand_shape = [-1]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestExpandV2OpRank2_Corner_tensor_attr(TestExpandV2OpRank1_tensor_attr):
|
||||
def init_data(self):
|
||||
self.ori_shape = [12, 14]
|
||||
self.expand_times = [1, 1]
|
||||
self.expand_shape = [12, 14]
|
||||
self.infer_expand_shape = [12, -1]
|
||||
|
||||
|
||||
# Situation 3: shape is a tensor
|
||||
class TestExpandV2OpRank1_tensor(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand_v2"
|
||||
self.init_data()
|
||||
|
||||
self.inputs = {
|
||||
'X': np.random.random(self.ori_shape).astype("float64"),
|
||||
'Shape': np.array(self.expand_shape).astype("int32"),
|
||||
}
|
||||
self.attrs = {}
|
||||
output = np.tile(self.inputs['X'], self.expand_times)
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def init_data(self):
|
||||
self.ori_shape = [100]
|
||||
self.expand_times = [2, 1]
|
||||
self.expand_shape = [2, 100]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
# Situation 4: input x is Integer
|
||||
class TestExpandV2OpInteger(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand_v2"
|
||||
self.inputs = {
|
||||
'X': np.random.randint(
|
||||
10, size=(2, 4, 5)).astype("int32")
|
||||
}
|
||||
self.attrs = {'shape': [2, 4, 5]}
|
||||
output = np.tile(self.inputs['X'], (1, 1, 1))
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
# Situation 5: input x is Bool
|
||||
class TestExpandV2OpBoolean(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand_v2"
|
||||
self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
|
||||
self.attrs = {'shape': [2, 4, 5]}
|
||||
output = np.tile(self.inputs['X'], (1, 1, 1))
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
# Situation 56: input x is Integer
|
||||
class TestExpandV2OpInt64_t(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand_v2"
|
||||
self.inputs = {
|
||||
'X': np.random.randint(
|
||||
10, size=(2, 4, 5)).astype("int64")
|
||||
}
|
||||
self.attrs = {'shape': [2, 4, 5]}
|
||||
output = np.tile(self.inputs['X'], (1, 1, 1))
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
class TestExpandV2Error(unittest.TestCase):
|
||||
def test_errors(self):
|
||||
with program_guard(Program(), Program()):
|
||||
x1 = fluid.create_lod_tensor(
|
||||
np.array([[-1]]), [[1]], fluid.CPUPlace())
|
||||
shape = [2, 2]
|
||||
self.assertRaises(TypeError, paddle.tensor.expand, x1, shape)
|
||||
x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
|
||||
self.assertRaises(TypeError, paddle.tensor.expand, x2, shape)
|
||||
x3 = fluid.layers.data(name='x3', shape=[4], dtype="bool")
|
||||
x3.stop_gradient = True
|
||||
self.assertRaises(ValueError, paddle.tensor.expand, x3, shape)
|
||||
|
||||
|
||||
# Test python API
|
||||
class TestExpandV2API(unittest.TestCase):
|
||||
def test_api(self):
|
||||
input = np.random.random([12, 14]).astype("float32")
|
||||
x = fluid.layers.data(
|
||||
name='x', shape=[12, 14], append_batch_size=False, dtype="float32")
|
||||
|
||||
positive_2 = fluid.layers.fill_constant([1], "int32", 12)
|
||||
expand_shape = fluid.layers.data(
|
||||
name="expand_shape",
|
||||
shape=[2],
|
||||
append_batch_size=False,
|
||||
dtype="int32")
|
||||
|
||||
out_1 = paddle.expand(x, shape=[12, 14])
|
||||
out_2 = paddle.expand(x, shape=[positive_2, 14])
|
||||
out_3 = paddle.expand(x, shape=expand_shape)
|
||||
|
||||
g0 = fluid.backward.calc_gradient(out_2, x)
|
||||
|
||||
exe = fluid.Executor(place=fluid.CPUPlace())
|
||||
res_1, res_2, res_3 = exe.run(fluid.default_main_program(),
|
||||
feed={
|
||||
"x": input,
|
||||
"expand_shape":
|
||||
np.array([12, 14]).astype("int32")
|
||||
},
|
||||
fetch_list=[out_1, out_2, out_3])
|
||||
assert np.array_equal(res_1, np.tile(input, (1, 1)))
|
||||
assert np.array_equal(res_2, np.tile(input, (1, 1)))
|
||||
assert np.array_equal(res_3, np.tile(input, (1, 1)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue