Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into ctc_evaluator_py

fix-profile-doc-typo
wanghaoshuang 7 years ago
commit 25dec82f24

@ -77,10 +77,13 @@ def lang_type(filename):
elif filename.endswith(".proto"):
return "C"
else:
print("Unsupported filetype")
print("Unsupported filetype %s", filename)
exit(0)
PYTHON_ENCODE = re.compile("^[ \t\v]*#.*?coding[:=][ \t]*([-_.a-zA-Z0-9]+)")
def main(argv=None):
parser = argparse.ArgumentParser(
description='Checker for copyright declaration.')
@ -89,8 +92,15 @@ def main(argv=None):
retv = 0
for filename in args.filenames:
first_line = io.open(filename).readline()
if "COPYRIGHT" in first_line.upper() : continue
fd = io.open(filename)
first_line = fd.readline()
if "COPYRIGHT" in first_line.upper(): continue
if filename.endswith(".py"):
second_line = fd.readline()
if first_line.startswith("#!") or PYTHON_ENCODE.match(
second_line) != None or PYTHON_ENCODE.match(
first_line) != None:
continue
original_contents = io.open(filename).read()
new_contents = generate_copyright(
COPYRIGHT, lang_type(filename)) + original_contents

@ -1,21 +1,24 @@
## Background
Every operator has many kernels because there are multiple data types, places, data layout that Fluid supports. We use the `KernelType` to describe kernel types that operators can hold.
Every operator has many kernels because there are multiple data types, places, data layout, library type that Fluid supports. We use the `OpKernelType ` to describe kernel types that operators can hold.
The `KernelType` is as follows.
The `OpKernelType ` is as follows:
```
struct KernelType {
```cpp
struct OpKernelType {
Place place_;
DataType data_type_;
LayoutType layout_;
DataLayout data_layout_;
LibraryType library_type_;
};
```
The `place_` is a descriptor of the device and the computational library, e.g., `MKLDNNPlace`, `CUDAPlace`.
- The `place_` is a descriptor of the device, e.g., CPUPlace, CUDAPlace.
The `data_type_` is the data type that this kernel performs on, e.g., `FP32`, `INT64`. Note that one kernel may have inputs with different data types. However, it will be a major `data_type`. For example, the `cross_entropy` takes `int64` as it label, and `double`/`float` as its input logit and output cost. The major `data_type` of `cross_entropy` is `float`/`double`.
- The `data_type_` is the data type that this kernel performs on, e.g., `FP32`, `INT64`. Note that one kernel may have inputs with different data types. However, it will be a major `data_type`. For example, the `cross_entropy` takes `int64` as it label, and `double`/`float` as its input logit and output cost. The major `data_type` of `cross_entropy` is `float` or `double`.
The `layout` is useful for some computational library. One example is that MKLDNN uses many kinds of layout, such as `nChw8c`. Each kind of layout will invoke the different kernel.
- The `data_layout_ ` is useful for some computational library. One example is that MKLDNN uses many kinds of layout, such as `nChw8c`. Each kind of layout will invoke the different kernel.
- The `library_type_` describes the computational library, e.g., `MKLDNN`, `CUDNN`.
## Problem
@ -25,42 +28,72 @@ We register a kernel for every operator and every kernel type ideally. However,
2. Some operators will take too many memory. It is better to force them into CPU. However, the rest of operators in this neural network will be performed on GPU, i.e., model parallel problem.
3. Some layout and place are particular. One example is that MKLDNN uses `nChw8` and there is no other library uses `nChw8c`.
Problems under these situations are similar. We can formalise this problem as follow.
Take one situation to give a detailed explanation, if we have two Operators: OP1 and OP2, OP1 has one output `op1_to_op2`, and `op1_to_op2` is the input of OP2.
If OP1 and OP2 run on the same place(for example CPUPlace), then `op1_2_op2` can be used directly by OP2.
```
OP1(CPUPlace)
|
op1_2_op2
|
OP2(CPUPlace)
```
If OP1 and OP2 run one different place, then OP2 cannot `use op1_2_op2` directly.
Problems under these situations are similar. We can formalize this problem as follow.
We register kernels with types $KT = \{kt_1, kt_2, kt_3, ...\}$ for one operator. The inputs of this operator should be run on kernel type $kt_{?}$, which the $kt_{?} \notin KT$. How to cast the input of this operator from $kt_{?}$ to any of kernel type in $KT$.
## Solution
## Solution: data transform
It is clearly that transforming inputs of an operator toadapt another kernel type is not related to the particular operator. So we should register these transformation methods as global methods.
It is clear that transforming inputs of an operator to adapt another kernel type is not related to the particular operator. So we should register these transformation methods as global methods.
We can infer a kernel type from the inputs of an operators. We let this kernel type as `actual kernel type`, which means this kernel type is the actually kernel type that operator should be performed.
We can infer kernel type for each input of an operator. We let this kernel type as `actual kernel type for var`, which means this kernel type is the kernel type that can process this input variable.
We can get a kernel type by 1) The configuration of operator description. (Users may want to force use `MKL` for `conv` operator). 2) The place of the current executor. (Executor is running on GPU). This kernel type is what we expect the operator will be performed on. We let this kernel type as `expect kernel type`.
We transform the input data from `actual` to `expect` if the expect kernel type is not as same as actual kernel type.
We transform the input data from `actual` to `expect` if the actual kernel type is not as same as expect kernel type.
The algorithm is described as follow
The algorithm is described as following
```cpp
using DataTransformationFN = std::function<void(const Tensor& in, Tensor* out)>;
using KernelTypePair = std::pair<KernelType, KernelType>;
map<KernelTypePair, DataTransformationFN> g_data_transformation_;
void OpWithKernel::Run() {
vec<Tensor> inputs = ...
auto actual_kernel_type = GetActualKernelType(inputs);
// The expected kernel type is related to actual kernel type.
// For the most operators, the expected kernel type is as same as
// actual kernel type.
//
// So we pass `actual_kernel_type` as a parameter of
// GetExpectedKernelType
auto expect_kernel_type = GetExpectedKernelType(actual_kernel_type);
auto trans = g_data_transformation_[{actual_kernel_type, expect_kernel_type}];
kernel.run(trans(inputs));
void OperatorWithKernel::Run(
const Scope& scope,
const platform::Place& place) const {
ExecutionContext ctx(...);
auto expected_kernel_key = this->GetExpectedKernelType(ctx);
Scope& new_scope = scope.NewScope();
for (auto& var_name : this->Inputs()) {
auto* tensor_in = GetTensor(var_name);
auto kernel_type_for_var = this->GetKernelTypeForVar(...);
if (kernel_type_for_var.place_ != expected_kernel_key.place_) {
auto* trans_var = new_scope.Var(var_name);
auto* out = DataTransform(expected_kernel_key,
kernel_type_for_var,
*tensor_in);
CopyVariableWithTensor(...);
}
}
auto kernel = kernels.find(expected_kernel_key);
kernel->Compute(ExecutionContext(...));
}
```
then the actual process for the multi-device above will be:
```
OP1(CPUPlace)
|
op1_2_op2(on CPU)
|
[transform](from CPU to GPU)
|
op1_2_op2(on GPU)
|
OP2(CUDAPlace)
```

@ -4,7 +4,8 @@
- [Implementing C++ Types](#implementing-c-types)
- [Defining ProtoMaker](#defining-protomaker)
- [Defining Operator](#defining-operator)
- [Registering Operator](#registering-operator)
- [Defining OpKernel](#defining-opkernel)
- [Registering Operator and OpKernel](#registering-operator-and-opkernel)
- [Compilation](#compilation)
- [Python Binding](#python-binding)
- [Unit Tests](#unit-tests)
@ -16,12 +17,13 @@
Here are the base types needed. For details, please refer to the design docs.
- `framework::OperatorBase`: Operator (Op)base class.
- `framework::OpKernel`: Base class for Op computation.
- `framework::OperatorWithKernel`: Inherited from OperatorBase, describing an operator with computation.
- `class OpProtoAndCheckerMaker`: Describes an Operator's input, output, attributes and description, mainly used to interface with Python API.
- `framework::OperatorBase`: Operator (Op)base class.
- `framework::OpKernel`: Base class for Op computation kernel.
- `framework::OperatorWithKernel`: Inherited from OperatorBase, describing an operator with computation kernels.
An operator can be differentiated by whether in has kernel methods. An operator with kernel inherits from `OperatorWithKernel` while the ones without inherit from `OperatorBase`. This tutorial focuses on implementing operators with kernels. In short, an operator includes the following information:
Operators can be categorized into two groups: operator with kernel(s) and operator without kernel(s). An operator with kernel(s) inherits from `OperatorWithKernel` while the one without kernel(s) inherits from `OperatorBase`. This tutorial focuses on implementing operators with kernels. In short, an operator includes the following information:
Information | Where is it defined
@ -32,7 +34,7 @@ Kernel implementation | The kernel methods shared between CPU and CUDA are
Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation.
New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions. **
New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions.**
Let's take matrix multiplication operator, [MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc), as an example to introduce the writing of an Operator with Kernel.
@ -156,7 +158,8 @@ Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, w
- `typename T` denotes data type, such as `float` or `double`.
`MulKernel` types need to rewrite the interface for `Compute`.
- `Compute` takes one input variable `const framework::ExecutionContext& context`.
- `Compute` takes one input parameter: `const framework::ExecutionContext& context`.
- Compared with `InferShapeContext`, `ExecutionContext` includes device types, and can similarly extract input, output, and attribute variables.
- `Compute` implements the computation logics of an `OpKernel`.
@ -177,7 +180,7 @@ Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, w
};
```
Note that **different devices (CPU, CUDA)share an Op definition; whether or not they share the same `OpKernel` depends on whether `Compute` calls functions that support both devices.**
Note that **different devices (CPU, CUDA)share one Op definition; whether or not they share the same `OpKernel` depends on whether `Compute` calls functions can support both devices.**
`MulOp`'s CPU and CUDA share the same `Kernel`. A non-sharing `OpKernel` example can be seen in [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43).
@ -188,13 +191,14 @@ This concludes the forward implementation of an operator. Next its operation and
The definition of its corresponding backward operator, if applicable, is similar to that of an forward operator. **Note that a backward operator does not include a `ProtoMaker`**.
### Registering Operator
### Registering Operator and OpKernel
- In `.cc` files, register forward and backward operator classes and the CPU kernel.
```cpp
namespace ops = paddle::operators;
REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad);
REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(mul_grad,
ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>);
@ -204,6 +208,7 @@ The definition of its corresponding backward operator, if applicable, is similar
- `REGISTER_OP` registers the `ops::MulOp` class, type named `mul`, its type `ProtoMaker` is `ops::MulOpMaker`, registering `ops::MulOpGrad` as `mul_grad`.
- `REGISTER_OP_WITHOUT_GRADIENT` registers an operator without gradient.
- `REGISTER_OP_CPU_KERNEL` registers `ops::MulKernel` class and specialized template types `paddle::platform::CPUPlace` and `float`, which also registers `ops::MulGradKernel`.
@ -225,6 +230,7 @@ The definition of its corresponding backward operator, if applicable, is similar
Run the following commands to compile.
```
# maybe you need to rerun cmake
make mul_op
```

@ -0,0 +1,121 @@
## Add Kernels for a New Device
### Background
PaddlePaddle Fluid have hundreds of operators. Each operator could have one or more kernels. A kernel is an implementation of the operator for a certain device, which could be a hardware device, e.g., the CUDA GPU, or a library that utilizes a device, e.g., Intel MKL that makes full use of the Xeon CPU.
[This document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/new_op_en.md) explains how to add an operator, and its kernels. The kernels of an operator are indexed by a C++ type [`OpKernelType`](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/operator_kernel_type.md). An operator chooses the right kernel at runtime. This choosing mechanism is described [here](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md).
### Write Kernels for A New Device
#### Add A New Device
For some historical reaons, we misuse the word *library* for *device*. For example, we call the deivce type by *library type*. An example is the header file [`library_type.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/library_type.h#L24). We will correct this ASAP.
To register a new device, we need to add an enum value to `LibraryType`:
```
enum class LibraryType {
kPlain = 0,
kMKLDNN = 1,
kCUDNN = 2,
};
```
#### Add A New [Place](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h#L53)
If you have a new kind of Device, firstly you need to add a new kind of [`Place`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h#L53). For example `CUDAPlace`:
```cpp
struct CUDAPlace {
CUDAPlace() : CUDAPlace(0) {}
explicit CUDAPlace(int d) : device(d) {}
inline int GetDeviceId() const { return device; }
// needed for variant equality comparison
inline bool operator==(const CUDAPlace &o) const {
return device == o.device;
}
inline bool operator!=(const CUDAPlace &o) const { return !(*this == o); }
int device;
};
typedef boost::variant<CUDAPlace, CPUPlace> Place;
```
#### Add [device context]((https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h#L37))
After a new kind of Device is added, you should add a corresponding [DeviceContext](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h#L37) for it.
```cpp
class DeviceContext {
public:
virtual ~DeviceContext() {}
virtual Place GetPlace() const = 0;
virtual void Wait() const {}
};
```
#### Implement new [OpKernel](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L351) for your Device.
A detailed documentation can be found in [`new_op_and_kernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/new_op_en.md)
```cpp
class OpKernelBase {
public:
/**
* ExecutionContext is the only parameter of Kernel Run function.
* Run will get input/output variables, state such as momentum and
* device resource such as CUDA stream, cublas handle, etc. from
* ExecutionContext. User should construct it before run the Operator.
*/
virtual void Compute(const ExecutionContext& context) const = 0;
virtual ~OpKernelBase() = default;
};
template <typename T>
class OpKernel : public OpKernelBase {
public:
using ELEMENT_TYPE = T;
};
```
#### Register the OpKernel to framework
After writing the components described above, we should register the kernel to the framework.
We use `REGISTER_OP_KERNEL` to do the registration.
```cpp
REGISTER_OP_KERNEL(
op_type,
library_type,
place_type,
kernel0, kernel1, ...)
```
kernel0, kernel1 are kernels that have the same `op_type`, `library_type`, `place_type` but different `data_types`.
take [`conv2d`]((https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/conv_cudnn_op.cu.cc#L318)) as an example:
```cpp
REGISTER_OP_KERNEL(conv2d, CPU, paddle::platform::CPUPlace,
paddle::operators::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
paddle::operators::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_KERNEL(conv2d, CUDNN, ::paddle::platform::CUDAPlace,
paddle::operators::CUDNNConvOpKernel<float>,
paddle::operators::CUDNNConvOpKernel<double>);
```
In the code above:
- `conv2d` is the type/name of the operator
- `CUDNN/CPU` is `library`
- `paddle::platform::CUDAPlace/CPUPlace` is `place`
- template parameter `float/double` on `CUDNNConvOpKernel<T>` is `data_type`.

@ -101,9 +101,11 @@ t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
... #create executor
# in pserver, run this
exe.run(fluid.default_startup_program())
#current_endpoint here means current pserver IP:PORT you wish to run on
exe.run(t.get_pserver_program(current_endpoint, optimize_ops))
pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
exe.run(pserver_startup)
exe.run(pserver_prog)
# in trainer, run this
... # define data reader

@ -33,8 +33,13 @@ cc_library(scope SRCS scope.cc DEPS glog threadpool)
cc_test(scope_test SRCS scope_test.cc DEPS scope)
cc_library(data_device_transform SRCS data_device_transform.cc DEPS tensor)
nv_test(data_device_transform_test SRCS data_device_transform_test.cu
DEPS operator op_registry init math_function)
cc_library(data_type_transform SRCS data_type_transform.cc DEPS tensor)
cc_library(data_layout_transform SRCS data_layout_transform.cc DEPS tensor math_function)
cc_test(data_layout_transform_test SRCS data_layout_transform_test.cc DEPS data_layout_transform)
cc_library(data_transform SRCS data_transform.cc DEPS math_function tensor
framework_proto selected_rows data_device_transform data_type_transform data_layout_transform)
@ -82,5 +87,3 @@ cc_test(init_test SRCS init_test.cc DEPS init)
cc_test(op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto)
cc_test(cow_ptr_tests SRCS details/cow_ptr_test.cc)
nv_test(data_device_transform_test SRCS data_device_transform_test.cu
DEPS operator op_registry init math_function)

@ -150,6 +150,7 @@ TEST(Operator, CPUtoGPU) {
// get output
auto* output2 = scope.Var("OUT2");
gpu_op->Run(scope, cuda_place);
VLOG(3) << "after gpu_op run";
// auto* output2_ptr = output2->Get<LoDTensor>().data<float>();
DeviceContextPool& pool = DeviceContextPool::Instance();

@ -1,4 +1,4 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -14,12 +14,23 @@ limitations under the License. */
#include "paddle/framework/data_layout_transform.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace framework {
std::vector<int> GetAxis(const DataLayout& from, const DataLayout& to) {
PADDLE_ENFORCE_NE(from, to,
"layout transform should transform different layout");
if (from == DataLayout::kNCHW && to == DataLayout::kNHWC) {
return {0, 2, 3, 1};
} else if (from == DataLayout::kNHWC && to == DataLayout::kNCHW) {
return {0, 3, 1, 2};
} else {
PADDLE_THROW("unsupported transform");
}
}
struct CastDataLayout {
CastDataLayout(const platform::DeviceContext* ctx,
const std::vector<int>& axis, const framework::Tensor& in,
@ -44,38 +55,36 @@ struct CastDataLayout {
}
};
void TransDataLayout(const std::vector<int>& axis,
const platform::DeviceContext* ctx,
const KernelTypePair& kernel_pair, const Variable& in,
Variable* out) {
PADDLE_ENFORCE(in.IsType<Tensor>(), "Only support Tensor transform!.");
void TransDataLayout(const OpKernelType& kernel_type_for_var,
const OpKernelType& expected_kernel_type, const Tensor& in,
Tensor* out) {
PADDLE_ENFORCE(
platform::places_are_same_class(kernel_pair.first.place_,
kernel_pair.second.place_),
platform::places_are_same_class(kernel_type_for_var.place_,
expected_kernel_type.place_),
"TransDataLayout only support DataLayout transform on same place!");
PADDLE_ENFORCE(kernel_pair.first.data_type_ == kernel_pair.second.data_type_,
"TransDataLayout only support Datatype are same!");
auto src = in.Get<Tensor>();
auto* dst = out->GetMutable<Tensor>();
PADDLE_ENFORCE(arity(src.dims()) == 4, "Input Arity Only Suppport 4!");
PADDLE_ENFORCE(arity(in.dims()) == 4, "Input Arity only support 4!");
auto& pool = platform::DeviceContextPool::Instance();
auto src_dim = src.dims();
auto src_dim = in.dims();
std::vector<int64_t> dst_dim;
auto axis = GetAxis(kernel_type_for_var.data_layout_,
expected_kernel_type.data_layout_);
dst_dim.resize(axis.size());
for (size_t i = 0; i < axis.size(); i++) {
dst_dim[i] = src_dim[axis[i]];
}
dst->Resize(make_ddim(dst_dim));
auto place = kernel_pair.second.place_;
dst->mutable_data(place, src.type());
out->Resize(make_ddim(dst_dim));
out->mutable_data(expected_kernel_type.place_, in.type());
auto src_type = kernel_pair.first.data_type_;
framework::VisitDataType(src_type, CastDataLayout(ctx, axis, src, dst));
framework::VisitDataType(
framework::ToDataType(in.type()),
CastDataLayout(pool.Get(expected_kernel_type.place_), axis, in, out));
dst->set_layout(kernel_pair.second.data_layout_);
out->set_layout(expected_kernel_type.data_layout_);
}
} // namespace framework

@ -1,4 +1,4 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -15,17 +15,17 @@ limitations under the License. */
#pragma once
#include "paddle/framework/op_kernel_type.h"
#include "paddle/framework/tensor.h"
#include "paddle/framework/variable.h"
namespace paddle {
namespace framework {
using KernelTypePair = std::pair<OpKernelType, OpKernelType>;
std::vector<int> GetAxis(const DataLayout& from, const DataLayout& to);
void TransDataLayout(const std::vector<int>& axis,
const platform::DeviceContext* ctx,
const KernelTypePair& kernel_pair, const Variable& in,
Variable* out);
void TransDataLayout(const OpKernelType& kernel_type_for_var,
const OpKernelType& expected_kernel_type, const Tensor& in,
Tensor* out);
} // namespace framework
} // namespace paddle

@ -0,0 +1,44 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/data_layout_transform.h"
#include "gtest/gtest.h"
#include "paddle/platform/device_context.h"
TEST(DataTransform, DataLayoutFunction) {
using namespace paddle::framework;
using namespace paddle::platform;
auto place = CPUPlace();
Tensor in = Tensor();
Tensor out = Tensor();
in.mutable_data<double>(make_ddim({2, 3, 1, 2}), place);
in.set_layout(DataLayout::kNHWC);
auto kernel_nhwc = OpKernelType(proto::DataType::FP32, place,
DataLayout::kNHWC, LibraryType::kPlain);
auto kernel_ncwh = OpKernelType(proto::DataType::FP32, place,
DataLayout::kNCHW, LibraryType::kPlain);
TransDataLayout(kernel_nhwc, kernel_ncwh, in, &out);
EXPECT_TRUE(out.layout() == DataLayout::kNCHW);
EXPECT_TRUE(out.dims() == make_ddim({2, 2, 3, 1}));
TransDataLayout(kernel_ncwh, kernel_nhwc, in, &out);
EXPECT_TRUE(in.layout() == DataLayout::kNHWC);
EXPECT_TRUE(in.dims() == make_ddim({2, 3, 1, 2}));
}

@ -15,18 +15,43 @@ limitations under the License. */
#include "paddle/framework/data_transform.h"
#include "paddle/framework/data_device_transform.h"
#include "paddle/framework/data_layout_transform.h"
namespace paddle {
namespace framework {
static void PassTensorData(Tensor* from, Tensor* to) {
to->ShareDataWith(*from);
*from = Tensor();
}
void DataTransform(const OpKernelType& expected_kernel_type,
const OpKernelType& kernel_type_for_var,
const Tensor& input_tensor, Tensor* out) {
const Tensor& input_tensor, Tensor* output_tensor) {
bool transformed = false;
Tensor in;
in.ShareDataWith(input_tensor);
Tensor out;
// do layout transform
if (NeedTransformLayout(expected_kernel_type.data_layout_,
kernel_type_for_var.data_layout_)) {
TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out);
transformed = true;
PassTensorData(&out, &in);
}
// do device transform
if (!platform::is_same_place(kernel_type_for_var.place_,
expected_kernel_type.place_)) {
DeviceTransform(input_tensor, expected_kernel_type.place_, out);
DeviceTransform(in, expected_kernel_type.place_, &out);
transformed = true;
PassTensorData(&out, &in);
}
PADDLE_ENFORCE_NOT_NULL(out, "out should not be null");
PADDLE_ENFORCE(transformed, "no transform is done, please check!");
// get output data
output_tensor->ShareDataWith(in);
}
void CopyVariableWithTensor(const Variable& in_var, const Tensor& tensor,

@ -286,18 +286,18 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
DeserializeFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
}
// TODO(tonyyang-svail): make this function support LoD
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
const std::vector<platform::Place> places) const {
check_memory_size();
PADDLE_ENFORCE(lod().empty(), "Disable parallel lod for now");
size_t result_size = std::min(static_cast<size_t>(dims()[0]), places.size());
size_t remainder = dims()[0] % places.size();
int batch_size =
lod().empty() ? dims()[0] : static_cast<int>(lod()[0].size()) - 1;
size_t result_size = std::min(static_cast<size_t>(batch_size), places.size());
size_t remainder = batch_size % places.size();
std::vector<LoDTensor> results;
results.reserve(result_size);
int step_width = static_cast<int>(dims()[0] / result_size);
int step_width = static_cast<int>(batch_size / result_size);
for (size_t i = 0; i < result_size; ++i) {
int begin = static_cast<int>(i * step_width);
int end = static_cast<int>((i + 1) * step_width);
@ -305,13 +305,28 @@ std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
end += remainder;
}
auto src = Slice(begin, end);
auto &dst_place = places[i];
LoDTensor dst;
if (!(dst_place == place())) {
if (lod().empty()) {
auto src = Slice(begin, end);
auto &dst_place = places[i];
framework::Copy(src, dst_place, &dst);
} else { // It is no need to copy if src_place and dst_place are same.
dst.ShareDataWith(src);
} else {
auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0);
auto &offset = lod_and_offset.second;
auto src = Slice(offset.first, offset.second);
auto &dst_place = places[i];
framework::Copy(src, dst_place, &dst);
LoD my_lod;
for (auto &l : lod_and_offset.first) {
std::vector<size_t> v{0};
for (auto &ll : l) {
v.push_back(ll + v.back());
}
my_lod.emplace_back(v);
}
dst.set_lod(my_lod);
}
results.emplace_back(dst);
}
@ -319,29 +334,38 @@ std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
return results;
}
// TODO(tonyyang-svail): make this function support LoD
void LoDTensor::MergeLoDTensor(
const std::vector<const LoDTensor *> &lod_tensors,
platform::Place dst_place) {
PADDLE_ENFORCE(!lod_tensors.empty());
framework::DDim new_dim = lod_tensors[0]->dims();
std::type_index new_type = lod_tensors[0]->type();
auto new_layout = lod_tensors[0]->layout();
int64_t new_height = 0;
for (auto *lod : lod_tensors) {
new_height += lod->dims()[0];
for (int i = 1; i < new_dim.size(); ++i) {
PADDLE_ENFORCE_EQ(new_dim[i], lod->dims()[i]);
framework::DataLayout new_layout = lod_tensors[0]->layout();
LoD new_lod = lod_tensors[0]->lod();
for (size_t i = 1; i < lod_tensors.size(); ++i) {
auto *t = lod_tensors[i];
PADDLE_ENFORCE_EQ(new_type.hash_code(), t->type().hash_code());
PADDLE_ENFORCE_EQ(new_layout, t->layout());
PADDLE_ENFORCE_EQ(framework::product(new_dim) / new_dim[0],
framework::product(t->dims()) / t->dims()[0]);
new_dim[0] += t->dims()[0];
auto &lod = t->lod();
for (size_t j = 0; j < lod.size(); ++j) {
auto &sub_lod = new_lod[j];
auto &offset = sub_lod.back();
for (size_t k = 1; k < lod[j].size(); ++k) {
sub_lod.push_back(lod[j][k] + offset);
}
}
PADDLE_ENFORCE_EQ(new_type, lod->type());
PADDLE_ENFORCE_EQ(new_layout, lod->layout());
}
new_dim[0] = new_height;
Resize(new_dim);
set_layout(new_layout);
set_lod(new_lod);
mutable_data(dst_place, new_type);
int begin = 0;
for (auto *src : lod_tensors) {
int end = begin + src->dims()[0];

@ -100,6 +100,71 @@ TEST(LoD, ToAbsOffset) {
EXPECT_EQ(abs_lod, expected);
}
TEST(LoD, SplitLoDTensor) {
LoD lod;
lod.push_back(std::vector<size_t>({0, 2, 4, 5, 6}));
lod.push_back(std::vector<size_t>({0, 1, 6, 8, 13, 15, 20}));
platform::CPUPlace place;
LoDTensor lod_tensor;
lod_tensor.Resize({20, 1});
float* dst_ptr = lod_tensor.mutable_data<float>(place);
for (int i = 0; i < lod_tensor.numel(); ++i) {
dst_ptr[i] = i;
}
lod_tensor.set_lod(lod);
std::vector<platform::Place> places{platform::CPUPlace(),
platform::CPUPlace()};
LoD lod0;
lod0.push_back(std::vector<size_t>({0, 2, 4}));
lod0.push_back(std::vector<size_t>({0, 1, 6, 8, 13}));
LoD lod1;
lod1.push_back(std::vector<size_t>({0, 1, 2}));
lod1.push_back(std::vector<size_t>({0, 2, 7}));
auto lods = lod_tensor.SplitLoDTensor(places);
EXPECT_EQ(lods[0].lod(), lod0);
EXPECT_EQ(lods[1].lod(), lod1);
}
TEST(LoD, MergeLoDTensor) {
LoD lod;
lod.push_back(std::vector<size_t>({0, 2, 4, 5, 6}));
lod.push_back(std::vector<size_t>({0, 1, 6, 8, 13, 15, 20}));
platform::CPUPlace place;
LoDTensor lod_tensor0;
LoD lod0;
lod0.push_back(std::vector<size_t>({0, 2, 4}));
lod0.push_back(std::vector<size_t>({0, 1, 6, 8, 13}));
lod_tensor0.set_lod(lod0);
lod_tensor0.Resize({13, 1});
float* dst_ptr = lod_tensor0.mutable_data<float>(place);
for (int i = 0; i < lod_tensor0.numel(); ++i) {
dst_ptr[i] = i;
}
LoDTensor lod_tensor1;
LoD lod1;
lod1.push_back(std::vector<size_t>({0, 1, 2}));
lod1.push_back(std::vector<size_t>({0, 2, 7}));
lod_tensor1.set_lod(lod1);
lod_tensor1.Resize({7, 1});
dst_ptr = lod_tensor1.mutable_data<float>(place);
for (int i = 0; i < lod_tensor1.numel(); ++i) {
dst_ptr[i] = i;
}
std::vector<const LoDTensor*> lods{&lod_tensor0, &lod_tensor1};
LoDTensor lod_tensor;
lod_tensor.MergeLoDTensor(lods, place);
EXPECT_EQ(lod_tensor.lod(), lod);
}
TEST(LoD, CheckLoD) {
LoD relative_lod;
relative_lod.push_back(std::vector<size_t>({0, 2}));

@ -85,9 +85,14 @@ inline std::string KernelTypeToString(const OpKernelType& kernel_key) {
return stream.str();
}
inline bool NeedTransformLayout(const DataLayout& l, const DataLayout& r) {
return l != DataLayout::kAnyLayout && r != DataLayout::kAnyLayout && l != r;
}
inline bool TransFromNeeded(const OpKernelType& l, const OpKernelType& r) {
return (!platform::places_are_same_class(l.place_, r.place_)) ||
(l.data_type_ != r.data_type_) || (l.data_layout_ != r.data_layout_);
(l.data_type_ != r.data_type_) ||
NeedTransformLayout(l.data_layout_, r.data_layout_);
}
} // namespace framework

@ -8,27 +8,6 @@ cc_library(paddle_fluid_api
# Merge all modules into a simgle static library
cc_library(paddle_fluid DEPS paddle_fluid_api ${FLUID_CORE_MODULES})
# ptools
# just for testing, we may need to change the storing format for inference_model
# and move the dependent of pickle.
# download from http://www.picklingtools.com/
# build in the C++ sub-directory, using command
# make -f Makefile.Linux libptools.so
set(PTOOLS_LIB)
set(PTOOLS_ROOT $ENV{PTOOLS_ROOT} CACHE PATH "Folder contains PicklingTools")
find_path(PTOOLS_INC_DIR chooseser.h PATHS ${PTOOLS_ROOT}/C++)
find_library(PTOOLS_SHARED_LIB NAMES ptools PATHS ${PTOOLS_ROOT}/C++)
if(PTOOLS_INC_DIR AND PTOOLS_SHARED_LIB)
add_definitions(-DPADDLE_USE_PTOOLS)
set(PTOOLS_LIB ptools)
message(STATUS "Found PicklingTools: ${PTOOLS_SHARED_LIB}")
add_library(${PTOOLS_LIB} SHARED IMPORTED GLOBAL)
set_property(TARGET ${PTOOLS_LIB} PROPERTY IMPORTED_LOCATION ${PTOOLS_SHARED_LIB})
include_directories(${PTOOLS_ROOT}/C++)
include_directories(${PTOOLS_ROOT}/C++/opencontainers_1_8_5/include)
add_definitions(-DOC_NEW_STYLE_INCLUDES) # used in ptools
endif()
add_executable(example example.cc)
if(APPLE)
set(OPTIONAL_LINK_FLAGS)

@ -18,33 +18,21 @@ limitations under the License. */
#include "paddle/inference/inference.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
DEFINE_string(feed_var_names, "", "Names of feeding variables");
DEFINE_string(fetch_var_names, "", "Names of fetching variables");
int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_dirname.empty() || FLAGS_feed_var_names.empty() ||
FLAGS_fetch_var_names.empty()) {
if (FLAGS_dirname.empty()) {
// Example:
// ./example --dirname=recognize_digits_mlp.inference.model
// --feed_var_names="x"
// --fetch_var_names="fc_2.tmp_2"
std::cout << "Usage: ./example --dirname=path/to/your/model "
"--feed_var_names=x --fetch_var_names=y"
<< std::endl;
std::cout << "Usage: ./example --dirname=path/to/your/model" << std::endl;
exit(1);
}
std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
std::cout << "FLAGS_feed_var_names: " << FLAGS_feed_var_names << std::endl;
std::cout << "FLAGS_fetch_var_names: " << FLAGS_fetch_var_names << std::endl;
std::string dirname = FLAGS_dirname;
std::vector<std::string> feed_var_names = {FLAGS_feed_var_names};
std::vector<std::string> fetch_var_names = {FLAGS_fetch_var_names};
paddle::InferenceEngine* engine = new paddle::InferenceEngine();
engine->LoadInferenceModel(dirname, feed_var_names, fetch_var_names);
engine->LoadInferenceModel(dirname);
paddle::framework::LoDTensor input;
srand(time(0));

@ -25,19 +25,37 @@ limitations under the License. */
namespace paddle {
void InferenceEngine::LoadInferenceModel(const std::string& dirname) {
std::string model_filename = dirname + "/__model__.dat";
LOG(INFO) << "loading model from " << model_filename;
std::ifstream inputfs(model_filename, std::ios::in | std::ios::binary);
std::string program_desc_str;
inputfs.seekg(0, std::ios::end);
program_desc_str.resize(inputfs.tellg());
inputfs.seekg(0, std::ios::beg);
LOG(INFO) << "program_desc_str's size: " << program_desc_str.size();
inputfs.read(&program_desc_str[0], program_desc_str.size());
inputfs.close();
program_ = new framework::ProgramDesc(program_desc_str);
GenerateLoadProgram(dirname);
framework::BlockDesc* global_block = program_->MutableBlock(0);
feed_var_names_.clear();
fetch_var_names_.clear();
for (auto* op : global_block->AllOps()) {
if (op->Type() == "feed") {
feed_var_names_.insert(feed_var_names_.begin(), op->Output("Out")[0]);
} else if (op->Type() == "fetch") {
fetch_var_names_.push_back(op->Input("X")[0]);
}
}
}
void InferenceEngine::LoadInferenceModel(
const std::string& dirname,
const std::vector<std::string>& feed_var_names,
const std::vector<std::string>& fetch_var_names) {
#ifdef PADDLE_USE_PTOOLS
std::string model_filename = dirname + "/__model__";
LOG(INFO) << "Using PicklingTools, loading model from " << model_filename;
Val v;
LoadValFromFile(model_filename.c_str(), v, SERIALIZE_P0);
std::string program_desc_str = v["program_desc_str"];
LOG(INFO) << "program_desc_str's size: " << program_desc_str.size();
// PicklingTools cannot parse the vector of strings correctly.
#else
std::string model_filename = dirname + "/__model__.dat";
LOG(INFO) << "loading model from " << model_filename;
std::ifstream inputfs(model_filename, std::ios::in | std::ios::binary);
@ -48,7 +66,7 @@ void InferenceEngine::LoadInferenceModel(
LOG(INFO) << "program_desc_str's size: " << program_desc_str.size();
inputfs.read(&program_desc_str[0], program_desc_str.size());
inputfs.close();
#endif
program_ = new framework::ProgramDesc(program_desc_str);
GenerateLoadProgram(dirname);
@ -62,7 +80,7 @@ void InferenceEngine::LoadInferenceModel(
}
bool InferenceEngine::IsParameter(const framework::VarDesc* var) {
if (var->Persistable()) {
if (var->Persistable() && var->Name() != "feed" && var->Name() != "fetch") {
// There are many unreachable variables in the program
for (size_t i = 0; i < program_->Size(); ++i) {
const framework::BlockDesc& block = program_->Block(i);

@ -28,6 +28,7 @@ public:
delete load_program_;
}
void LoadInferenceModel(const std::string& dirname);
void LoadInferenceModel(const std::string& dirname,
const std::vector<std::string>& feed_var_names,
const std::vector<std::string>& fetch_var_names);

@ -0,0 +1,93 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/ctc_align_op.h"
namespace paddle {
namespace operators {
class CTCAlignOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input of CTCAlignOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Output"),
"Output of CTCAlignOp should not be null.");
auto input_dims = ctx->GetInputDim("Input");
// TODO(wanghaoshuang): it is tricky to set the wrong dimension here.
ctx->SetOutputDim("Output", input_dims);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
ctx.device_context());
}
};
class CTCAlignOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CTCAlignOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Input",
"(LodTensor, default: LoDTensor<int>), Its shape is "
"[Lp, 1], where Lp is the sum of all input sequences' length.");
AddOutput("Output", "(Tensor, default: Tensor<int>), The align result.");
AddAttr<int>("blank",
"(int, default: 0), the blank label setted in Connectionist "
"Temporal Classification (CTC) op.")
.SetDefault(0);
AddAttr<bool>("merge_repeated",
"(bool, default: true), whether to "
"merge repeated elements between two blanks. ")
.SetDefault(true);
AddComment(R"DOC(
CTCAlign op is used to merge repeated elements between two blanks
and then delete all blanks in sequence.
Given:
Input.data = [0, 1, 2, 2, 0, 4, 0, 4, 5, 0, 6,
6, 0, 0, 7, 7, 7, 0]
Input.dims = {18, 1}
Input.LoD = [[0, 11, 18]]
And:
blank = 0
merge_repeated = True
Then:
Output.data = [1, 2, 4, 4, 5, 6,
6, 7]
Output.dims = {8, 1}
Output.LoD = [[0, 6, 8]]
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(ctc_align, ops::CTCAlignOp, ops::CTCAlignOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
ctc_align, ops::CTCAlignKernel<paddle::platform::CPUDeviceContext, int>,
ops::CTCAlignKernel<paddle::platform::CPUDeviceContext, int64_t>);

@ -0,0 +1,91 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <stdio.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include "paddle/operators/ctc_align_op.h"
namespace paddle {
namespace operators {
template <typename T>
__global__ void MergeAndDelCudaKernel(const int64_t num_token, const T* tokens,
const size_t num_seq, size_t* lod0,
const int blank, const int merge_repeated,
size_t* out_lod0, T* output) {
int ouput_idx = 0;
out_lod0[0] = 0;
for (int i = 0; i < num_seq; ++i) {
T pre_token = -1;
for (int j = lod0[i]; j < lod0[i + 1]; ++j) {
if (tokens[j] != blank && !(merge_repeated && tokens[j] == pre_token)) {
output[ouput_idx] = tokens[j];
++ouput_idx;
}
pre_token = tokens[j];
}
out_lod0[i + 1] = ouput_idx;
}
}
template <typename T>
class CTCAlignOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use CUDAPlace.");
const size_t level = 0;
auto* input = ctx.Input<LoDTensor>("Input");
auto* output = ctx.Output<LoDTensor>("Output");
auto input_lod = framework::ToAbsOffset(input->lod());
const T* tokens = input->data<T>();
const int64_t num_tokens = input->dims()[0];
const size_t num_seq = input_lod[level].size() - 1;
const int blank = ctx.Attr<int>("blank");
const int merge_repeated =
static_cast<int>(ctx.Attr<bool>("merge_repeated"));
// prepare a lod to record lod information while merging elements
thrust::device_vector<size_t> dev_out_lod0(input_lod[level].size());
size_t* dev_out_lod0_ptr = thrust::raw_pointer_cast(dev_out_lod0.data());
// merge elements and delete blank
T* output_data = output->mutable_data<T>({num_tokens, 1}, ctx.GetPlace());
auto stream = ctx.cuda_device_context().stream();
MergeAndDelCudaKernel<T><<<1, 1, 0, stream>>>(
num_tokens, tokens, num_seq, input_lod[level].data(), blank,
merge_repeated, dev_out_lod0_ptr, output_data);
// set output lod
thrust::host_vector<size_t> host_out_lod0(dev_out_lod0.begin(),
dev_out_lod0.end());
framework::LoD out_lod;
out_lod.push_back(host_out_lod0);
output->set_lod(out_lod);
// resize output dims
output->Resize({static_cast<int64_t>(host_out_lod0.back()), 1});
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_CUDA_KERNEL(ctc_align, paddle::operators::CTCAlignOpCUDAKernel<int>,
paddle::operators::CTCAlignOpCUDAKernel<int64_t>);

@ -0,0 +1,75 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string.h>
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename DeviceContext, typename T>
class CTCAlignKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<LoDTensor>("Input");
auto* output = ctx.Output<LoDTensor>("Output");
const size_t level = 0;
auto input_lod = framework::ToAbsOffset(input->lod());
// check input dims and lod
auto input_dims = input->dims();
PADDLE_ENFORCE_EQ(input_dims[0],
static_cast<int64_t>(input_lod[level].back()),
"The first dimension of Input(Input) should be equal to "
"the sum of all sequences' lengths.");
const size_t num_sequences = input_lod[level].size() - 1;
size_t blank = static_cast<size_t>(ctx.Attr<int>("blank"));
bool merge_repeated = ctx.Attr<bool>("merge_repeated");
// merge repeated tokens and delete blank
T* output_data = output->mutable_data<T>(ctx.GetPlace());
size_t output_idx = 0;
std::vector<size_t> output_lod0(1, 0);
const T* input_data = input->data<T>();
for (size_t seq_idx = 0; seq_idx < num_sequences; ++seq_idx) {
T prev_token = -1;
for (size_t i = input_lod[level][seq_idx];
i < input_lod[level][seq_idx + 1]; ++i) {
if (input_data[i] != blank &&
!(merge_repeated && input_data[i] == prev_token)) {
output_data[output_idx] = input_data[i];
++output_idx;
}
prev_token = input_data[i];
}
output_lod0.push_back(output_idx);
}
// set output lod
framework::LoD output_lod;
output_lod.push_back(output_lod0);
output->set_lod(output_lod);
// resize output dims
output->Resize({static_cast<int64_t>(output_lod0.back()), 1});
}
};
} // namespace operators
} // namespace paddle

@ -63,9 +63,6 @@ bool RPCClient::AsyncGetVariable(const std::string& ep,
sendrecv::VariableMessage req;
req.set_varname(var_name);
auto* var = scope.FindVar(var_name);
SerializeToMessage(var_name, var, ctx, &req);
// varhandle
VarHandle var_h;
var_h.ep = ep;

@ -36,7 +36,10 @@ class RequestBase {
CallStatus Status() { return status_; }
void SetStatus(CallStatus status) { status_ = status; }
virtual std::string GetReqName() { assert(false); }
virtual std::string GetReqName() {
assert(false);
return "";
}
protected:
grpc::ServerContext ctx_;
@ -80,11 +83,13 @@ class RequestGet final : public RequestBase {
public:
explicit RequestGet(sendrecv::SendRecvService::AsyncService* service,
grpc::ServerCompletionQueue* cq, framework::Scope* scope,
const platform::DeviceContext* dev_ctx)
const platform::DeviceContext* dev_ctx,
SimpleBlockQueue<char>* queue)
: RequestBase(service, cq),
responder_(&ctx_),
scope_(scope),
dev_ctx_(dev_ctx) {
dev_ctx_(dev_ctx),
queue_(queue) {
service_->RequestGetVariable(&ctx_, &request_, &responder_, cq_, cq_, this);
}
@ -100,6 +105,7 @@ class RequestGet final : public RequestBase {
// TODO(gongwb): check var's info.
responder_.Finish(reply_, grpc::Status::OK, this);
status_ = FINISH;
queue_->Push('c');
}
protected:
@ -108,8 +114,15 @@ class RequestGet final : public RequestBase {
ServerAsyncResponseWriter<sendrecv::VariableMessage> responder_;
framework::Scope* scope_;
const platform::DeviceContext* dev_ctx_;
SimpleBlockQueue<char>* queue_;
};
void AsyncGRPCServer::WaitClientGet(int count) {
for (int i = 0; i < count; ++i) {
var_get_queue_.Pop();
}
}
void AsyncGRPCServer::RunSyncUpdate() {
grpc::ServerBuilder builder;
builder.AddListeningPort(address_, grpc::InsecureServerCredentials());
@ -149,7 +162,6 @@ void AsyncGRPCServer::ShutdownQueue() {
}
// This URL explains why shutdown is complicate:
// https://stackoverflow.com/questions/35708348/grpc-what-is-the-recommended-way-to-shut-down-an-asynchronous-server-in-c
void AsyncGRPCServer::ShutDown() {
server_->Shutdown();
ShutdownQueue();
@ -170,10 +182,12 @@ void AsyncGRPCServer::TryToRegisterNewGetOne() {
if (is_shut_down_) {
return;
}
RequestGet* get = new RequestGet(&service_, cq_get_.get(), scope_, dev_ctx_);
RequestGet* get = new RequestGet(&service_, cq_get_.get(), scope_, dev_ctx_,
&var_get_queue_);
VLOG(4) << "create Requestget status:" << get->Status();
}
// FIXME(typhoonzero): remove wait argument and change cq_name to enum.
void AsyncGRPCServer::HandleRequest(bool wait, grpc::ServerCompletionQueue* cq,
std::string cq_name,
std::function<void()> TryToRegisterNewOne) {
@ -188,9 +202,9 @@ void AsyncGRPCServer::HandleRequest(bool wait, grpc::ServerCompletionQueue* cq,
}
PADDLE_ENFORCE(tag);
if (wait && !done_) {
Wait();
}
// FIXME(typhoonzero): de-couple the barriers with recv_op
if (cq_name == "cq_get") WaitCond(1);
if (cq_name == "cq_send") WaitCond(0);
RequestBase* base = (RequestBase*)tag;
// reference:
@ -222,22 +236,18 @@ void AsyncGRPCServer::HandleRequest(bool wait, grpc::ServerCompletionQueue* cq,
}
}
void AsyncGRPCServer::Wait() {
std::unique_lock<std::mutex> lock(this->mutex_);
condition_.wait(lock, [=] { return this->done_ == true; });
}
void AsyncGRPCServer::Reset() {
std::lock_guard<std::mutex> lock(this->mutex_);
done_ = false;
void AsyncGRPCServer::WaitCond(int cond) {
std::unique_lock<std::mutex> lock(this->barrier_mutex_);
barrier_condition_.wait(lock,
[=] { return this->barrier_cond_step_ == cond; });
}
void AsyncGRPCServer::Done() {
void AsyncGRPCServer::SetCond(int cond) {
{
std::lock_guard<std::mutex> lock(this->mutex_);
done_ = true;
std::lock_guard<std::mutex> lock(this->barrier_mutex_);
barrier_cond_step_ = cond;
}
condition_.notify_all();
barrier_condition_.notify_all();
}
} // namespace detail

@ -41,9 +41,10 @@ class AsyncGRPCServer final : public sendrecv::SendRecvService::Service {
void RunSyncUpdate();
void Reset();
void Done();
// functions to sync server barrier status.
void WaitCond(int cond);
void SetCond(int cond);
void WaitClientGet(int count);
void SetScope(framework::Scope *scope) { scope_ = scope; }
@ -56,7 +57,6 @@ class AsyncGRPCServer final : public sendrecv::SendRecvService::Service {
void ShutDown();
protected:
void Wait();
void HandleRequest(bool wait, grpc::ServerCompletionQueue *cq,
std::string cq_name,
std::function<void()> TryToRegisterNewOne);
@ -78,11 +78,12 @@ class AsyncGRPCServer final : public sendrecv::SendRecvService::Service {
const platform::DeviceContext *dev_ctx_;
// received variable from RPC, operators fetch variable from this queue.
SimpleBlockQueue<MessageWithName> var_recv_queue_;
SimpleBlockQueue<char> var_get_queue_;
// condition of the sub program
std::mutex mutex_;
volatile mutable bool done_;
std::condition_variable condition_;
std::mutex barrier_mutex_;
mutable int barrier_cond_step_;
std::condition_variable barrier_condition_;
std::unique_ptr<std::thread> t_send_;
std::unique_ptr<std::thread> t_get_;

@ -49,10 +49,10 @@ class EditDistanceOpMaker : public framework::OpProtoAndCheckerMaker {
EditDistanceOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Hyps",
"(2-D LoDTensor<int>, 2nd dim. equal to 1) "
"(2-D LoDTensor<int64_t>, 2nd dim. equal to 1) "
"The indices for hypothesis strings.");
AddInput("Refs",
"(2-D LoDTensor<int>, 2nd dim. equal to 1) "
"(2-D LoDTensor<int64_t>, 2nd dim. equal to 1) "
"The indices for reference strings.");
AddAttr<bool>("normalized",
"(bool, default false) Indicated whether to normalize "
@ -66,22 +66,22 @@ class EditDistanceOpMaker : public framework::OpProtoAndCheckerMaker {
EditDistance operator computes the edit distances between a batch of hypothesis
strings and their references.
Edit distance, also called Levenshtein distance, measures how dissimilar two strings
are by counting the minimum number of operations to transform one string into anthor.
Here the operations include insertion, deletion, and substitution. For example,
given hypothesis string A = "kitten" and reference B = "sitting", the edit distance
is 3 for A will be transformed into B at least after two substitutions and one
Edit distance, also called Levenshtein distance, measures how dissimilar two strings
are by counting the minimum number of operations to transform one string into anthor.
Here the operations include insertion, deletion, and substitution. For example,
given hypothesis string A = "kitten" and reference B = "sitting", the edit distance
is 3 for A will be transformed into B at least after two substitutions and one
insertion:
"kitten" -> "sitten" -> "sittin" -> "sitting"
Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with the total
number denoted by `batch_size`, and the separation is specified by the LoD information.
And the `batch_size` reference strings are arranged in order in the same way in the
Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with the total
number denoted by `batch_size`, and the separation is specified by the LoD information.
And the `batch_size` reference strings are arranged in order in the same way in the
LoDTensor Input(Refs).
Output(Out) contains the `batch_size` results and each stands for the edit stance
for a pair of strings respectively. If Attr(normalized) is true, the edit distance
Output(Out) contains the `batch_size` results and each stands for the edit stance
for a pair of strings respectively. If Attr(normalized) is true, the edit distance
will be divided by the length of reference string.
)DOC");
}

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save