|
|
|
@ -98,25 +98,112 @@ public:
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Mainly used to test cases where the height and width (input, filter)
|
|
|
|
|
// are not equal.
|
|
|
|
|
template <DeviceType DType1, DeviceType DType2>
|
|
|
|
|
class ConvolutionTest2 {
|
|
|
|
|
public:
|
|
|
|
|
ConvolutionTest2(const std::string& conv1,
|
|
|
|
|
const std::string& conv2,
|
|
|
|
|
TestType type,
|
|
|
|
|
std::string algo = "auto") {
|
|
|
|
|
for (size_t batchSize : {16}) {
|
|
|
|
|
for (size_t inputHeight : {7, 31}) {
|
|
|
|
|
for (size_t inputWidth : {10, 54}) {
|
|
|
|
|
for (size_t filterHeight : {1, 5}) {
|
|
|
|
|
for (size_t filterWidth : {3, 7}) {
|
|
|
|
|
for (size_t inputChannels : {7}) {
|
|
|
|
|
for (size_t outputChannels : {32}) {
|
|
|
|
|
size_t stride = 1;
|
|
|
|
|
size_t padding = 0;
|
|
|
|
|
size_t outputHeight =
|
|
|
|
|
(inputHeight - filterHeight + 2 * padding + stride) /
|
|
|
|
|
stride;
|
|
|
|
|
size_t outputWidth =
|
|
|
|
|
(inputWidth - filterWidth + 2 * padding + stride) /
|
|
|
|
|
stride;
|
|
|
|
|
VLOG(3) << " batchSize=" << batchSize
|
|
|
|
|
<< " inputChannels=" << inputChannels
|
|
|
|
|
<< " inputHeight=" << inputHeight
|
|
|
|
|
<< " inputWidth=" << inputWidth
|
|
|
|
|
<< " outputChannels=" << outputChannels
|
|
|
|
|
<< " filterHeight=" << filterHeight
|
|
|
|
|
<< " filterWidth=" << filterWidth
|
|
|
|
|
<< " outputHeight=" << outputHeight
|
|
|
|
|
<< " outputWidth=" << outputWidth
|
|
|
|
|
<< " stride=" << stride << " padding=" << padding;
|
|
|
|
|
|
|
|
|
|
std::vector<size_t> paddings = {padding, padding};
|
|
|
|
|
std::vector<size_t> strides = {stride, stride};
|
|
|
|
|
Compare2Function<DType1, DType2> test(
|
|
|
|
|
conv1,
|
|
|
|
|
conv2,
|
|
|
|
|
FuncConfig()
|
|
|
|
|
.set("paddings", paddings)
|
|
|
|
|
.set("strides", strides)
|
|
|
|
|
.set("groups", (size_t)1)
|
|
|
|
|
.set("algo", algo));
|
|
|
|
|
|
|
|
|
|
TensorShape input{
|
|
|
|
|
batchSize, inputChannels, inputHeight, inputWidth};
|
|
|
|
|
TensorShape filter{
|
|
|
|
|
outputChannels, inputChannels, filterHeight, filterWidth};
|
|
|
|
|
TensorShape output{
|
|
|
|
|
batchSize, outputChannels, outputHeight, outputWidth};
|
|
|
|
|
|
|
|
|
|
if (type == kForwardTest) {
|
|
|
|
|
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
|
|
|
|
|
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
|
|
|
|
|
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
|
|
|
|
|
test.run();
|
|
|
|
|
} else if (type == kBackwardInputTest) {
|
|
|
|
|
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
|
|
|
|
|
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
|
|
|
|
|
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
|
|
|
|
|
test.run();
|
|
|
|
|
} else if (type == kBackwardFilterTest) {
|
|
|
|
|
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
|
|
|
|
|
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
|
|
|
|
|
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter));
|
|
|
|
|
test.run();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
TEST(Forward, GEMM) {
|
|
|
|
|
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
|
|
|
|
|
"NaiveConv-CPU", "GemmConv-CPU", kForwardTest);
|
|
|
|
|
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test2(
|
|
|
|
|
"NaiveConv-CPU", "GemmConv-CPU", kForwardTest);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifndef PADDLE_ONLY_CPU
|
|
|
|
|
TEST(Forward, GEMM2) {
|
|
|
|
|
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
|
|
|
|
|
"GemmConv-CPU", "GemmConv-GPU", kForwardTest);
|
|
|
|
|
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
|
|
|
|
|
"GemmConv-CPU", "GemmConv-GPU", kForwardTest);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(BackwardInput, GEMM) {
|
|
|
|
|
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
|
|
|
|
|
"GemmConvGradInput-CPU", "GemmConvGradInput-GPU", kBackwardInputTest);
|
|
|
|
|
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
|
|
|
|
|
"GemmConvGradInput-CPU", "GemmConvGradInput-GPU", kBackwardInputTest);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(BackwardFilter, GEMM) {
|
|
|
|
|
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
|
|
|
|
|
"GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", kBackwardFilterTest);
|
|
|
|
|
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
|
|
|
|
|
"GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", kBackwardFilterTest);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|