commit
2646ef6570
@ -0,0 +1,178 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/framework/backward.h"
|
||||
#include <list>
|
||||
#include "paddle/framework/net.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
|
||||
static bool AllInSet(const std::vector<std::string>& names,
|
||||
const std::string& suffix,
|
||||
const std::unordered_set<std::string>& set) {
|
||||
for (auto& name : names) {
|
||||
if (set.find(name + suffix) == set.end()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static std::shared_ptr<OperatorBase> NOP() {
|
||||
auto net_op = std::make_shared<NetOp>();
|
||||
net_op->type_ = "@NOP@";
|
||||
net_op->CompleteAddOp();
|
||||
return net_op;
|
||||
}
|
||||
|
||||
// Get backward operator from a forward operator, recursively implementation.
|
||||
//
|
||||
// no_grad_names the gradient variable names without gradient calculating.
|
||||
//
|
||||
// uniq_id is a unique index used inside recursively calling BackwardRecursive.
|
||||
// use `uid = uniq_id++;` to get the unique index, and pass `uniq_id` through
|
||||
// recursive calling.
|
||||
//
|
||||
// returns The backward operator. For simple situation, it is a simple
|
||||
// operator. For complex situation, it is a NetOp.
|
||||
//
|
||||
// See Backward.h for details
|
||||
static std::shared_ptr<OperatorBase> BackwardRecursive(
|
||||
const OperatorBase& forwardOp,
|
||||
std::unordered_set<std::string>& no_grad_names, size_t& uniq_id);
|
||||
std::shared_ptr<OperatorBase> BackwardRecursive(
|
||||
const OperatorBase& forwardOp,
|
||||
std::unordered_set<std::string>& no_grad_names, size_t& uniq_id) {
|
||||
// If all input gradients of forwarding operator do not need to calculate,
|
||||
// just return an NOP. Not return null ptr because NOP does not take
|
||||
// too much time for calculation, but it is useful for simplifying logic.
|
||||
if (AllInSet(forwardOp.inputs_, OperatorBase::GRAD_VAR_SUFFIX(),
|
||||
no_grad_names)) {
|
||||
return NOP();
|
||||
}
|
||||
|
||||
// All output gradients of forwarding operator do not need to calculate. Then
|
||||
// all input gradients cannot be computed at all, and we put them into
|
||||
// `no_grad_names` set. Return an NOP.
|
||||
if (AllInSet(forwardOp.outputs_, OperatorBase::GRAD_VAR_SUFFIX(),
|
||||
no_grad_names)) {
|
||||
for (auto& name : forwardOp.inputs_) {
|
||||
// Mark all input is not need
|
||||
no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX());
|
||||
}
|
||||
return NOP();
|
||||
}
|
||||
|
||||
// Returned gradient network
|
||||
auto net = std::make_shared<NetOp>();
|
||||
|
||||
if (forwardOp.IsNetOp()) {
|
||||
// Because forwardOp is a net op, it can static_cast.
|
||||
auto& forwardNet = static_cast<const NetOp&>(forwardOp);
|
||||
|
||||
// Map from output gradient variable name to operator's indices in backward
|
||||
// net. That operator generates that variable.
|
||||
std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;
|
||||
|
||||
size_t local_op_id = 0;
|
||||
// reversely travel forwardNet
|
||||
for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
|
||||
++it, ++local_op_id) {
|
||||
auto fwd = *it;
|
||||
auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id);
|
||||
net->AddOp(bwd);
|
||||
for (auto& out : bwd->outputs_) {
|
||||
dup_output_ops[out].emplace_back(local_op_id);
|
||||
}
|
||||
}
|
||||
// Get unique ID for this method.
|
||||
auto uid = uniq_id++;
|
||||
// TODO(dzh): more comment
|
||||
using Pos = std::pair<size_t, std::shared_ptr<OperatorBase>>;
|
||||
std::list<Pos> insert_position;
|
||||
for (auto& dup_output_op : dup_output_ops) {
|
||||
const std::string& name = dup_output_op.first;
|
||||
auto& dup_op = dup_output_op.second;
|
||||
if (dup_op.size() == 1) continue;
|
||||
std::vector<std::string> dup_outputs;
|
||||
|
||||
for (size_t i = 0; i < dup_op.size(); ++i) {
|
||||
auto op_offset = dup_op[i];
|
||||
dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" +
|
||||
std::to_string(i));
|
||||
net->ops_[op_offset]->Rename(name, dup_outputs.back());
|
||||
}
|
||||
insert_position.push_back(
|
||||
{dup_op.back(),
|
||||
OpRegistry::CreateOp(
|
||||
"add", {dup_outputs}, {name},
|
||||
{{"input_format",
|
||||
std::vector<int>{0, static_cast<int>(dup_outputs.size())}}})});
|
||||
}
|
||||
|
||||
insert_position.sort(
|
||||
[](const Pos& l, const Pos& r) { return l.first > r.first; });
|
||||
|
||||
for (auto& pos : insert_position) {
|
||||
net->InsertOp(pos.first + 1, pos.second);
|
||||
}
|
||||
|
||||
} else {
|
||||
std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp);
|
||||
for (std::string& grad_input : grad_op->inputs_) {
|
||||
if (no_grad_names.count(grad_input)) {
|
||||
std::string prefix = grad_input.substr(
|
||||
0, grad_input.size() - OperatorBase::GRAD_VAR_SUFFIX().size());
|
||||
grad_input = prefix + OperatorBase::ZERO_VAR_SUFFIX();
|
||||
|
||||
// If part of input gradient of that operator is not calculated, fill
|
||||
// zero variables to that input gradient.
|
||||
net->AddOp(OpRegistry::CreateOp("fill_zeros_like", {prefix},
|
||||
{grad_input}, {}));
|
||||
}
|
||||
}
|
||||
|
||||
for (std::string& grad_output : grad_op->outputs_) {
|
||||
if (no_grad_names.count(grad_output)) {
|
||||
grad_output = OperatorBase::EMPTY_VAR_NAME();
|
||||
}
|
||||
}
|
||||
|
||||
if (net->ops_.empty()) { // Current no aux op is added to network
|
||||
return grad_op;
|
||||
}
|
||||
net->AddOp(grad_op);
|
||||
}
|
||||
net->type_ = "@GENERATED_BACKWARD@";
|
||||
net->CompleteAddOp();
|
||||
return net;
|
||||
}
|
||||
|
||||
// See header for comments
|
||||
std::shared_ptr<OperatorBase> Backward(
|
||||
const OperatorBase& forwardOp,
|
||||
const std::unordered_set<std::string>& no_grad_vars) {
|
||||
std::unordered_set<std::string> no_grad_names;
|
||||
no_grad_names.reserve(no_grad_vars.size());
|
||||
|
||||
for (auto& name : no_grad_vars) {
|
||||
no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX());
|
||||
}
|
||||
size_t uid = 0;
|
||||
return BackwardRecursive(forwardOp, no_grad_names, uid);
|
||||
}
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
@ -0,0 +1,27 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include <unordered_set>
|
||||
#include "operator.h"
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
|
||||
// Create the backward operator from a forward operator.
|
||||
// TODO(yuyang18): Add more API reference comment.
|
||||
extern std::shared_ptr<OperatorBase> Backward(
|
||||
const OperatorBase& forwardOp,
|
||||
const std::unordered_set<std::string>& no_grad_vars);
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
After Width: | Height: | Size: 21 KiB |
Binary file not shown.
After Width: | Height: | Size: 28 KiB |
@ -0,0 +1,60 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/fill_zeros_like_op.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/framework/tensor.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class FillZerosLikeOp : public framework::OperatorWithKernel {
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE(ctx.InputSize() == 1UL,
|
||||
"Input size of FillZerosLikeOp must be one.");
|
||||
PADDLE_ENFORCE(ctx.OutputSize() == 1UL,
|
||||
"Output size of AddOp must be one.");
|
||||
PADDLE_ENFORCE(ctx.InputVar(0) != nullptr,
|
||||
"Input of FillZerosLikeOp must be set.");
|
||||
PADDLE_ENFORCE(ctx.OutputVar(0) != nullptr,
|
||||
"Output of FillZerosLikeOp must be set.");
|
||||
ctx.Output<framework::Tensor>(0)->Resize(
|
||||
ctx.Input<framework::Tensor>(0)->dims());
|
||||
}
|
||||
};
|
||||
|
||||
class FillZerosLikeOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
FillZerosLikeOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("Src", "The input of fill-zeros-like op.");
|
||||
AddOutput("Dst", "The varibale will be filled up with zeros.");
|
||||
AddComment(R"DOC(
|
||||
Fill up a vriable with zeros.
|
||||
|
||||
The output will have the same size with input.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OP(fill_zeros_like,
|
||||
paddle::operators::FillZerosLikeOp,
|
||||
paddle::operators::FillZerosLikeOpMaker);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
fill_zeros_like,
|
||||
paddle::operators::FillZerosLikeKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,6 @@
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/operators/fill_zeros_like_op.h"
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
fill_zeros_like,
|
||||
paddle::operators::FillZerosLikeKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,34 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "glog/logging.h"
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/operator.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename Place, typename T>
|
||||
class FillZerosLikeKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* output = context.Output<framework::Tensor>(0);
|
||||
output->mutable_data<T>(context.GetPlace());
|
||||
framework::EigenVector<T>::Flatten(*output).setZero();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
Loading…
Reference in new issue