|
|
|
@ -23,60 +23,97 @@ namespace operators {
|
|
|
|
|
template <typename T>
|
|
|
|
|
class SGDOpKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
|
|
|
auto* param = ctx.Input<framework::Tensor>("Param");
|
|
|
|
|
auto* param_out = ctx.Output<framework::Tensor>("ParamOut");
|
|
|
|
|
auto* learning_rate = ctx.Input<framework::Tensor>("LearningRate");
|
|
|
|
|
|
|
|
|
|
auto* grad_var = ctx.InputVar("Grad");
|
|
|
|
|
// Actually, all tensors are LoDTensor except SelectedRows.
|
|
|
|
|
if (grad_var->IsType<framework::LoDTensor>()) {
|
|
|
|
|
param_out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
auto* grad = ctx.Input<framework::Tensor>("Grad");
|
|
|
|
|
|
|
|
|
|
auto p = framework::EigenVector<T>::Flatten(*param);
|
|
|
|
|
auto g = framework::EigenVector<T>::Flatten(*grad);
|
|
|
|
|
auto o = framework::EigenVector<T>::Flatten(*param_out);
|
|
|
|
|
auto* lr = learning_rate->data<T>();
|
|
|
|
|
|
|
|
|
|
o = p - lr[0] * g;
|
|
|
|
|
} else if (grad_var->IsType<framework::SelectedRows>()) {
|
|
|
|
|
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
|
|
|
|
|
// This manual optimization brings difficulty to track data dependency.
|
|
|
|
|
// It's better to find a more elegant solution.
|
|
|
|
|
PADDLE_ENFORCE_EQ(param, param_out);
|
|
|
|
|
auto* grad = ctx.Input<framework::SelectedRows>("Grad");
|
|
|
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
|
|
|
const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
|
|
|
|
|
|
|
|
|
|
const auto *param_var = ctx.InputVar("Param");
|
|
|
|
|
const auto *grad_var = ctx.InputVar("Grad");
|
|
|
|
|
|
|
|
|
|
if (param_var->IsType<framework::LoDTensor>()) {
|
|
|
|
|
const auto *param = ctx.Input<framework::Tensor>("Param");
|
|
|
|
|
auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
|
|
|
|
|
|
|
|
|
|
// Actually, all tensors are LoDTensor except SelectedRows.
|
|
|
|
|
if (grad_var->IsType<framework::LoDTensor>()) {
|
|
|
|
|
param_out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
const auto *grad = ctx.Input<framework::Tensor>("Grad");
|
|
|
|
|
|
|
|
|
|
auto p = framework::EigenVector<T>::Flatten(*param);
|
|
|
|
|
auto g = framework::EigenVector<T>::Flatten(*grad);
|
|
|
|
|
auto o = framework::EigenVector<T>::Flatten(*param_out);
|
|
|
|
|
auto *lr = learning_rate->data<T>();
|
|
|
|
|
|
|
|
|
|
o = p - lr[0] * g;
|
|
|
|
|
} else if (grad_var->IsType<framework::SelectedRows>()) {
|
|
|
|
|
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
|
|
|
|
|
// This manual optimization brings difficulty to track data dependency.
|
|
|
|
|
// It's better to find a more elegant solution.
|
|
|
|
|
PADDLE_ENFORCE_EQ(param, param_out);
|
|
|
|
|
const auto *grad = ctx.Input<framework::SelectedRows>("Grad");
|
|
|
|
|
|
|
|
|
|
// for distributed training, a sparse var may be empty,
|
|
|
|
|
// just skip updating.
|
|
|
|
|
if (grad->rows().size() == 0) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
auto grad_height = grad->height();
|
|
|
|
|
auto out_dims = param_out->dims();
|
|
|
|
|
PADDLE_ENFORCE_EQ(grad_height, out_dims[0]);
|
|
|
|
|
|
|
|
|
|
auto &grad_value = grad->value();
|
|
|
|
|
auto &grad_rows = grad->rows();
|
|
|
|
|
|
|
|
|
|
size_t grad_row_numel = grad_value.numel() / grad_rows.size();
|
|
|
|
|
PADDLE_ENFORCE_EQ(grad_row_numel, param_out->numel() / grad_height);
|
|
|
|
|
|
|
|
|
|
auto *grad_data = grad_value.data<T>();
|
|
|
|
|
auto *out_data = param_out->data<T>();
|
|
|
|
|
auto *lr = learning_rate->data<T>();
|
|
|
|
|
for (size_t i = 0; i < grad_rows.size(); i++) {
|
|
|
|
|
PADDLE_ENFORCE(grad_rows[i] < grad_height,
|
|
|
|
|
"Input rows index should less than height");
|
|
|
|
|
for (int64_t j = 0; j < grad_row_numel; j++) {
|
|
|
|
|
out_data[grad_rows[i] * grad_row_numel + j] -=
|
|
|
|
|
lr[0] * grad_data[i * grad_row_numel + j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
PADDLE_THROW("Unsupported Variable Type of Grad");
|
|
|
|
|
}
|
|
|
|
|
} else if (param_var->IsType<framework::SelectedRows>()) {
|
|
|
|
|
PADDLE_ENFORCE(grad_var->IsType<framework::SelectedRows>(),
|
|
|
|
|
"when param "
|
|
|
|
|
"is SelectedRows, gradient should also be SelectedRows");
|
|
|
|
|
const auto ¶m = param_var->Get<framework::SelectedRows>();
|
|
|
|
|
auto *param_out = ctx.Output<framework::SelectedRows>("ParamOut");
|
|
|
|
|
const auto &grad = grad_var->Get<framework::SelectedRows>();
|
|
|
|
|
|
|
|
|
|
// for distributed training, a sparse var may be empty,
|
|
|
|
|
// just skip updating.
|
|
|
|
|
if (grad->rows().size() == 0) {
|
|
|
|
|
if (grad.rows().size() == 0) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
auto in_height = grad->height();
|
|
|
|
|
auto out_dims = param_out->dims();
|
|
|
|
|
PADDLE_ENFORCE_EQ(in_height, out_dims[0]);
|
|
|
|
|
|
|
|
|
|
auto& in_value = grad->value();
|
|
|
|
|
auto& in_rows = grad->rows();
|
|
|
|
|
size_t param_row_width = param.value().numel() / param.rows().size();
|
|
|
|
|
size_t grad_row_width = grad.value().numel() / grad.rows().size();
|
|
|
|
|
PADDLE_ENFORCE_EQ(param_row_width, grad_row_width,
|
|
|
|
|
"param_row should have the same size with grad_row");
|
|
|
|
|
|
|
|
|
|
int64_t in_row_numel = in_value.numel() / in_rows.size();
|
|
|
|
|
PADDLE_ENFORCE_EQ(in_row_numel, param_out->numel() / in_height);
|
|
|
|
|
|
|
|
|
|
auto* in_data = in_value.data<T>();
|
|
|
|
|
auto* out_data = param_out->data<T>();
|
|
|
|
|
auto* lr = learning_rate->data<T>();
|
|
|
|
|
for (size_t i = 0; i < in_rows.size(); i++) {
|
|
|
|
|
PADDLE_ENFORCE(in_rows[i] < in_height,
|
|
|
|
|
const auto *lr = learning_rate->data<T>();
|
|
|
|
|
const auto *grad_data = grad.value().data<T>();
|
|
|
|
|
auto *out_data = param_out->mutable_value()->data<T>();
|
|
|
|
|
for (size_t i = 0; i < grad.rows().size(); i++) {
|
|
|
|
|
PADDLE_ENFORCE(grad.rows()[i] < grad.height(),
|
|
|
|
|
"Input rows index should less than height");
|
|
|
|
|
for (int64_t j = 0; j < in_row_numel; j++) {
|
|
|
|
|
out_data[in_rows[i] * in_row_numel + j] -=
|
|
|
|
|
lr[0] * in_data[i * in_row_numel + j];
|
|
|
|
|
size_t id_index = framework::GetIndex(param.rows(), grad.rows()[i]);
|
|
|
|
|
for (int64_t j = 0; j < grad_row_width; j++) {
|
|
|
|
|
out_data[id_index * grad_row_width + j] -=
|
|
|
|
|
lr[0] * grad_data[i * grad_row_width + j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
PADDLE_THROW("Unsupported Variable Type of Grad");
|
|
|
|
|
PADDLE_THROW("Unsupported Variable Type of Parameter");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|