|
|
|
@ -1,3 +1,4 @@
|
|
|
|
|
import py_paddle.swig_paddle as swig_api
|
|
|
|
|
import paddle.trainer_config_helpers.config_parser_utils as config_parser_utils
|
|
|
|
|
import paddle.trainer_config_helpers.optimizers as v1_optimizers
|
|
|
|
|
"""
|
|
|
|
@ -16,7 +17,6 @@ __all__ = [
|
|
|
|
|
|
|
|
|
|
class Optimizer(object):
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
import py_paddle.swig_paddle as swig_api
|
|
|
|
|
if 'batch_size' in kwargs:
|
|
|
|
|
del kwargs['batch_size'] # not important for python library.
|
|
|
|
|
|
|
|
|
@ -35,7 +35,6 @@ class Optimizer(object):
|
|
|
|
|
For each optimizer(SGD, Adam), GradientMachine should enable different
|
|
|
|
|
buffers.
|
|
|
|
|
"""
|
|
|
|
|
import py_paddle.swig_paddle as swig_api
|
|
|
|
|
tmp = swig_api.ParameterOptimizer.create(self.__opt_conf__)
|
|
|
|
|
assert isinstance(tmp, swig_api.ParameterOptimizer)
|
|
|
|
|
return tmp.getParameterTypes()
|
|
|
|
|