parent
							
								
									957104564f
								
							
						
					
					
						commit
						2811ea4440
					
				
											
												
													File diff suppressed because it is too large
													Load Diff
												
											
										
									
								@ -0,0 +1,47 @@
 | 
				
			||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
				
			||||
 | 
				
			||||
Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||
you may not use this file except in compliance with the License.
 | 
				
			||||
You may obtain a copy of the License at
 | 
				
			||||
 | 
				
			||||
    http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||
 | 
				
			||||
Unless required by applicable law or agreed to in writing, software
 | 
				
			||||
distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||
See the License for the specific language governing permissions and
 | 
				
			||||
limitations under the License. */
 | 
				
			||||
 | 
				
			||||
#pragma once
 | 
				
			||||
 | 
				
			||||
#include "paddle/fluid/framework/op_registry.h"
 | 
				
			||||
 | 
				
			||||
namespace paddle {
 | 
				
			||||
namespace operators {
 | 
				
			||||
 | 
				
			||||
using Tensor = framework::Tensor;
 | 
				
			||||
 | 
				
			||||
class FCOp : public framework::OperatorWithKernel {
 | 
				
			||||
 public:
 | 
				
			||||
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
				
			||||
 | 
				
			||||
  void InferShape(framework::InferShapeContext* ctx) const override;
 | 
				
			||||
 | 
				
			||||
 protected:
 | 
				
			||||
  framework::OpKernelType GetExpectedKernelType(
 | 
				
			||||
      const framework::ExecutionContext& ctx) const override;
 | 
				
			||||
};
 | 
				
			||||
 | 
				
			||||
class FCOpGrad : public framework::OperatorWithKernel {
 | 
				
			||||
 public:
 | 
				
			||||
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
				
			||||
 | 
				
			||||
  void InferShape(framework::InferShapeContext* ctx) const override;
 | 
				
			||||
 | 
				
			||||
 protected:
 | 
				
			||||
  framework::OpKernelType GetExpectedKernelType(
 | 
				
			||||
      const framework::ExecutionContext& ctx) const override;
 | 
				
			||||
};
 | 
				
			||||
 | 
				
			||||
}  // namespace operators
 | 
				
			||||
}  // namespace paddle
 | 
				
			||||
@ -0,0 +1,99 @@
 | 
				
			||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
				
			||||
#
 | 
				
			||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||
# you may not use this file except in compliance with the License.
 | 
				
			||||
# You may obtain a copy of the License at
 | 
				
			||||
#
 | 
				
			||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||
#
 | 
				
			||||
# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||
# See the License for the specific language governing permissions and
 | 
				
			||||
# limitations under the License.
 | 
				
			||||
 | 
				
			||||
import unittest
 | 
				
			||||
import numpy as np
 | 
				
			||||
from op_test import OpTest
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
def fully_connected_naive(input, weights, bias_data=None):
 | 
				
			||||
    in_n, in_c, in_h, in_w = input.shape
 | 
				
			||||
    w_h, w_c = weights.shape
 | 
				
			||||
 | 
				
			||||
    x_data = np.reshape(input, [in_n, in_c * in_h * in_w])
 | 
				
			||||
    w_data = np.transpose(np.reshape(weights, (w_c, in_c * in_h * in_w)))
 | 
				
			||||
    result = None
 | 
				
			||||
 | 
				
			||||
    if not bias_data:
 | 
				
			||||
        result = np.dot(x_data, w_data)
 | 
				
			||||
    else:
 | 
				
			||||
        result = np.dot(x_data, w_data) + bias_data
 | 
				
			||||
 | 
				
			||||
    return result
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class MatrixGenerate:
 | 
				
			||||
    def __init__(self, mb, ic, oc, h, w):
 | 
				
			||||
        self.input = np.random.random((mb, ic, h, w)).astype("float32")
 | 
				
			||||
        self.weights = np.random.random((ic * h * w, oc)).astype("float32")
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestFCMKLDNNOp(OpTest):
 | 
				
			||||
    def setUp(self):
 | 
				
			||||
        self.op_type = "fc"
 | 
				
			||||
        self.use_mkldnn = True
 | 
				
			||||
        self.with_bias = True
 | 
				
			||||
        self.matrix = MatrixGenerate(1, 10, 15, 3, 3)
 | 
				
			||||
 | 
				
			||||
        self.inputs = {'Input': self.matrix.input, 'W': self.matrix.weights}
 | 
				
			||||
 | 
				
			||||
        self.attrs = {
 | 
				
			||||
            'use_mkldnn': self.use_mkldnn,
 | 
				
			||||
            'with_bias': self.with_bias
 | 
				
			||||
        }
 | 
				
			||||
 | 
				
			||||
        self.outputs = {
 | 
				
			||||
            'Out': fully_connected_naive(self.matrix.input, self.matrix.weights)
 | 
				
			||||
        }
 | 
				
			||||
 | 
				
			||||
    def test_check_output(self):
 | 
				
			||||
        self.check_output()
 | 
				
			||||
 | 
				
			||||
    def test_check_grad_normal(self):
 | 
				
			||||
        self.check_grad(set(['Input', 'W']), 'Out', max_relative_error=0.9)
 | 
				
			||||
 | 
				
			||||
    def test_check_grad_no_weight(self):
 | 
				
			||||
        self.check_grad(
 | 
				
			||||
            ['Input'], 'Out', max_relative_error=0.5, no_grad_set=set('W'))
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestFCMKLDNNOp1(TestFCMKLDNNOp):
 | 
				
			||||
    def init_op_type(self):
 | 
				
			||||
        self.matrix = MatrixGenerate(2, 15, 48, 2, 2)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestFCMKLDNNOp2(TestFCMKLDNNOp):
 | 
				
			||||
    def init_op_type(self):
 | 
				
			||||
        self.matrix = MatrixGenerate(2, 32, 40, 1, 1)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestFCMKLDNNOp3(TestFCMKLDNNOp):
 | 
				
			||||
    def init_op_type(self):
 | 
				
			||||
        self.matrix = MatrixGenerate(2, 2, 4, 1, 1)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestFCMKLDNNOp4(TestFCMKLDNNOp):
 | 
				
			||||
    def init_op_type(self):
 | 
				
			||||
        self.with_bias = False
 | 
				
			||||
        self.matrix = MatrixGenerate(2, 32, 48, 2, 2)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestFCMKLDNNOp4(TestFCMKLDNNOp):
 | 
				
			||||
    def init_op_type(self):
 | 
				
			||||
        self.with_bias = False
 | 
				
			||||
        self.matrix = MatrixGenerate(2, 32, 1000, 6, 6)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
if __name__ == "__main__":
 | 
				
			||||
    unittest.main()
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue