parent
70d15e84be
commit
286696aa2b
@ -1,169 +0,0 @@
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
langauge model's simple dataset.
|
||||
|
||||
This module will download dataset from
|
||||
http://www.fit.vutbr.cz/~imikolov/rnnlm/ and parse training set and test set
|
||||
into paddle reader creators.
|
||||
"""
|
||||
import paddle.v2.dataset.common
|
||||
import collections
|
||||
import tarfile
|
||||
|
||||
__all__ = ['train', 'test', 'build_dict']
|
||||
|
||||
URL = 'http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz'
|
||||
MD5 = '30177ea32e27c525793142b6bf2c8e2d'
|
||||
|
||||
|
||||
def word_count(f, word_freq=None):
|
||||
if word_freq is None:
|
||||
word_freq = collections.defaultdict(int)
|
||||
|
||||
for l in f:
|
||||
for w in l.strip().split():
|
||||
word_freq[w] += 1
|
||||
word_freq['<s>'] += 1
|
||||
word_freq['<e>'] += 1
|
||||
|
||||
return word_freq
|
||||
|
||||
|
||||
def build_dict(min_word_freq=50):
|
||||
"""
|
||||
Build a word dictionary from the corpus, Keys of the dictionary are words,
|
||||
and values are zero-based IDs of these words.
|
||||
"""
|
||||
train_filename = './simple-examples/data/ptb.train.txt'
|
||||
test_filename = './simple-examples/data/ptb.valid.txt'
|
||||
with tarfile.open(
|
||||
paddle.v2.dataset.common.download(
|
||||
paddle.v2.dataset.imikolov.URL, 'imikolov',
|
||||
paddle.v2.dataset.imikolov.MD5)) as tf:
|
||||
trainf = tf.extractfile(train_filename)
|
||||
testf = tf.extractfile(test_filename)
|
||||
word_freq = word_count(testf, word_count(trainf))
|
||||
if '<unk>' in word_freq:
|
||||
# remove <unk> for now, since we will set it as last index
|
||||
del word_freq['<unk>']
|
||||
|
||||
word_freq = filter(lambda x: x[1] > min_word_freq, word_freq.items())
|
||||
|
||||
word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0]))
|
||||
words, _ = list(zip(*word_freq_sorted))
|
||||
word_idx = dict(zip(words, xrange(len(words))))
|
||||
word_idx['<unk>'] = len(words)
|
||||
|
||||
return word_idx
|
||||
|
||||
|
||||
def reader_creator(filename, reader_type, word_idx, n=-1):
|
||||
def reader():
|
||||
with tarfile.open(
|
||||
paddle.v2.dataset.common.download(
|
||||
paddle.v2.dataset.imikolov.URL, 'imikolov',
|
||||
paddle.v2.dataset.imikolov.MD5)) as tf:
|
||||
f = tf.extractfile(filename)
|
||||
|
||||
UNK = word_idx['<unk>']
|
||||
|
||||
for l in f:
|
||||
if 'ngram' == reader_type:
|
||||
assert n > -1, 'Invalid gram length'
|
||||
l = ['<s>'] + l.strip().split() + ['<e>']
|
||||
if len(l) < n: continue
|
||||
l = [word_idx.get(w, UNK) for w in l]
|
||||
for i in range(n, len(l) + 1):
|
||||
yield tuple(l[i - n:i])
|
||||
elif 'seq' == reader_type:
|
||||
l = l.strip().split()
|
||||
l = [word_idx.get(w, UNK) for w in l]
|
||||
src_seq = [word_idx['<s>']] + l
|
||||
trg_seq = l + [word_idx['<e>']]
|
||||
yield src_seq, trg_seq
|
||||
|
||||
return reader
|
||||
|
||||
|
||||
def ngram_train(word_idx, n):
|
||||
"""
|
||||
ptb ngram type training set creator.
|
||||
|
||||
It returns a reader creator, each sample in the reader is a word ID
|
||||
tuple.
|
||||
|
||||
:param word_idx: word dictionary
|
||||
:type word_idx: dict
|
||||
:param n: sliding window size
|
||||
:type n: int
|
||||
:return: Training reader creator
|
||||
:rtype: callable
|
||||
"""
|
||||
return reader_creator('./simple-examples/data/ptb.train.txt', 'ngram',
|
||||
word_idx, n)
|
||||
|
||||
|
||||
def ngram_test(word_idx, n):
|
||||
"""
|
||||
ptb ngram test set creator.
|
||||
|
||||
It returns a reader creator, each sample in the reader is a word ID
|
||||
tuple.
|
||||
|
||||
:param word_idx: word dictionary
|
||||
:type word_idx: dict
|
||||
:param n: sliding window size
|
||||
:type n: int
|
||||
:return: Test reader creator
|
||||
:rtype: callable
|
||||
"""
|
||||
return reader_creator('./simple-examples/data/ptb.valid.txt', 'ngram',
|
||||
word_idx, n)
|
||||
|
||||
|
||||
def seq_train(word_idx):
|
||||
"""
|
||||
ptb sequence type training set creator.
|
||||
|
||||
It returns a reader creator, each sample in the reader is a word ID
|
||||
pair.
|
||||
|
||||
:param word_idx: word dictionary
|
||||
:type word_idx: dict
|
||||
:return: Test reader creator
|
||||
:rtype: callable
|
||||
"""
|
||||
return reader_creator('./simple-examples/data/ptb.train.txt', 'seq',
|
||||
word_idx)
|
||||
|
||||
|
||||
def seq_test(word_idx):
|
||||
"""
|
||||
ptb sequence type test set creator.
|
||||
|
||||
It returns a reader creator, each sample in the reader is a word ID
|
||||
pair.
|
||||
|
||||
:param word_idx: word dictionary
|
||||
:type word_idx: dict
|
||||
:return: Test reader creator
|
||||
:rtype: callable
|
||||
"""
|
||||
return reader_creator('./simple-examples/data/ptb.valid.txt', 'seq',
|
||||
word_idx)
|
||||
|
||||
|
||||
def fetch():
|
||||
paddle.v2.dataset.common.download(URL, "imikolov", MD5)
|
@ -1,53 +0,0 @@
|
||||
import paddle.v2.dataset.ptb
|
||||
import unittest
|
||||
|
||||
WORD_DICT = paddle.v2.dataset.ptb.build_dict()
|
||||
|
||||
|
||||
class TestMikolov(unittest.TestCase):
|
||||
def check_reader(self, reader, n):
|
||||
for l in reader():
|
||||
self.assertEqual(len(l), n)
|
||||
|
||||
def test_ngram_train(self):
|
||||
n = 5
|
||||
self.check_reader(paddle.v2.dataset.ptb.ngram_train(WORD_DICT, n), n)
|
||||
|
||||
def test_ngram_test(self):
|
||||
n = 5
|
||||
self.check_reader(paddle.v2.dataset.ptb.ngram_test(WORD_DICT, n), n)
|
||||
|
||||
def test_seq_train(self):
|
||||
first_line = 'aer banknote berlitz calloway centrust cluett fromstein '\
|
||||
'gitano guterman hydro-quebec ipo kia memotec mlx nahb punts '\
|
||||
'rake regatta rubens sim snack-food ssangyong swapo wachter'
|
||||
first_line = [
|
||||
WORD_DICT.get(ch, WORD_DICT['<unk>'])
|
||||
for ch in first_line.split(' ')
|
||||
]
|
||||
for l in paddle.v2.dataset.ptb.seq_train(WORD_DICT)():
|
||||
read_line = l[0][1:]
|
||||
break
|
||||
|
||||
self.assertEqual(first_line, read_line)
|
||||
|
||||
def test_seq_test(self):
|
||||
first_line = 'consumers may want to move their telephones a little '\
|
||||
'closer to the tv set'
|
||||
first_line = [
|
||||
WORD_DICT.get(ch, WORD_DICT['<unk>'])
|
||||
for ch in first_line.split(' ')
|
||||
]
|
||||
for l in paddle.v2.dataset.ptb.seq_test(WORD_DICT)():
|
||||
read_line = l[0][1:]
|
||||
break
|
||||
|
||||
self.assertEqual(first_line, read_line)
|
||||
|
||||
def test_total(self):
|
||||
_, idx = zip(*WORD_DICT.items())
|
||||
self.assertEqual(sorted(idx)[-1], len(WORD_DICT) - 1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue