parent
ae0d0c415c
commit
298e74da1e
@ -0,0 +1,155 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/squeeze_op.h"
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::OpKernelType;
|
||||
using framework::Tensor;
|
||||
|
||||
class SqueezeOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of SqueezeOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Output(Out) of SqueezeOp should not be null.");
|
||||
|
||||
const auto& x_dims = ctx->GetInputDim("X");
|
||||
// TODO(chenweihang): need check input tensor dims (<9).
|
||||
|
||||
const auto& axes = ctx->Attrs().Get<std::vector<int>>("axes");
|
||||
// TODO(chenweihang): need check axes is valid.
|
||||
// PADDLE_ENFORCE();
|
||||
for (int a : axes) {
|
||||
PADDLE_ENFORCE_LT(a, x_dims.size(),
|
||||
"The axis must be less than input tensor's rank.");
|
||||
}
|
||||
|
||||
auto out_dims = GetOutputShape(axes, x_dims);
|
||||
ctx->SetOutputDim("Out", out_dims);
|
||||
// TODO(chenweihang): need other check.
|
||||
}
|
||||
|
||||
static framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
|
||||
const framework::DDim& in_dims) {
|
||||
int num_squeeze_dims = squeeze_dims.size();
|
||||
int cnt_squeezed_dims = 0;
|
||||
bool should_squeeze[9] = {false};
|
||||
|
||||
// Determines number of dimensions of output tensor after squeeze.
|
||||
// Mark and count the dimensions need to be squeezed
|
||||
if (num_squeeze_dims == 0) {
|
||||
for (int idx = 0; idx < in_dims.size(); ++idx) {
|
||||
if (in_dims[idx] == 1) {
|
||||
should_squeeze[idx] = true;
|
||||
++cnt_squeezed_dims;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (int idx = 0; idx < num_squeeze_dims; ++idx) {
|
||||
int current = squeeze_dims[idx] < 0 ? squeeze_dims[idx] + in_dims.size()
|
||||
: squeeze_dims[idx];
|
||||
// TODO(chenweihang): shoude use PADALE_ENFORCE ? or if.
|
||||
PADDLE_ENFORCE_GE(current, 0, "Invalid axis is given.");
|
||||
PADDLE_ENFORCE_LT(current, in_dims.size(), "Invalid axis is given.");
|
||||
PADDLE_ENFORCE_EQ(in_dims[current], 1, "Invalid axis is given.");
|
||||
|
||||
if (!(should_squeeze[current])) ++cnt_squeezed_dims;
|
||||
should_squeeze[current] = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Make output dimensions
|
||||
std::vector<int64_t> output_shape(in_dims.size() - cnt_squeezed_dims, 0);
|
||||
for (int in_idx = 0, out_idx = 0; in_idx < in_dims.size(); ++in_idx) {
|
||||
if (!should_squeeze[in_idx]) {
|
||||
output_shape[out_idx++] = in_dims[in_idx];
|
||||
}
|
||||
}
|
||||
|
||||
return framework::make_ddim(output_shape);
|
||||
}
|
||||
};
|
||||
|
||||
class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
void Make() override {
|
||||
AddInput("X", "(Tensor), Tensors with at least max(dims) dimensions.");
|
||||
AddOutput("Out", "(Tensor), Reshaped tensor with same data as input.");
|
||||
AddAttr<std::vector<int>>("axes",
|
||||
"List of positive integers,"
|
||||
" indicate the dimensions to squeeze.");
|
||||
AddAttr<bool>("inplace",
|
||||
"(default: false) Change the source tensor's shape without "
|
||||
"memory copy. When Attr(inplace) is set true, the output "
|
||||
"tensor shares memory with Input(X), otherwise, a new output "
|
||||
"tensor is created, and its data are copied from Input(x).")
|
||||
.SetDefault(false);
|
||||
AddComment(R"DOC(
|
||||
Squeeze Operator.
|
||||
|
||||
Remove single-dimensional entries from the shape of a tensor.
|
||||
Takes a parameter axes with a list of axes to squeeze.
|
||||
If axes is not provided, all the single dimensions will be removed from the shape.
|
||||
If an axis is selected with shape entry not equal to one, an error is raised.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class SqueezeGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of SqueezeOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
||||
"Output(Out@GRAD/) of SqueezeOp should not be null.");
|
||||
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
||||
}
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
return framework::OpKernelType(
|
||||
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
|
||||
ctx.device_context());
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(squeeze, ops::SqueezeOp, ops::SqueezeOpMaker,
|
||||
paddle::framework::DefaultGradOpDescMaker<true>);
|
||||
REGISTER_OPERATOR(squeeze_grad, ops::SqueezeGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
squeeze, ops::SqueezeKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::SqueezeKernel<paddle::platform::CPUDeviceContext, double>,
|
||||
ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int>,
|
||||
ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
squeeze_grad,
|
||||
ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
|
||||
ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
|
||||
ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
@ -0,0 +1,30 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
|
||||
#include "paddle/fluid/operators/squeeze_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
squeeze, ops::SqueezeKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::SqueezeKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::SqueezeKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::SqueezeKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
squeeze_grad,
|
||||
ops::SqueezeGradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::SqueezeGradKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::SqueezeGradKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::SqueezeGradKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
@ -0,0 +1,73 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/framework/operator.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SqueezeKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||
auto *out = ctx.Output<framework::LoDTensor>("Out");
|
||||
auto *in = ctx.Input<framework::LoDTensor>("X");
|
||||
|
||||
framework::DDim out_dims = out->dims();
|
||||
|
||||
// TODO(chenweihang): Where is this attr be add.
|
||||
bool inplace = ctx.Attr<bool>("inplace");
|
||||
out->Resize(out_dims);
|
||||
if (!inplace) {
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
framework::TensorCopySync(*in, ctx.GetPlace(), out);
|
||||
out->Resize(out_dims);
|
||||
} else {
|
||||
out->ShareDataWith(*in);
|
||||
out->Resize(out_dims);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SqueezeGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||
auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||
auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
||||
|
||||
d_x->mutable_data<T>(ctx.GetPlace());
|
||||
bool inplace = ctx.Attr<bool>("inplace");
|
||||
|
||||
auto in_dims = d_x->dims();
|
||||
if (!inplace) {
|
||||
framework::TensorCopy(*d_out, ctx.GetPlace(), ctx.device_context(), d_x);
|
||||
ctx.device_context().Wait();
|
||||
d_x->Resize(in_dims);
|
||||
} else {
|
||||
d_x->ShareDataWith(*d_out);
|
||||
d_x->Resize(in_dims);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
Loading…
Reference in new issue